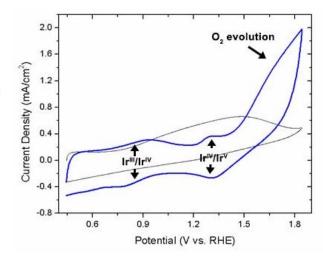

Acid Stable Iridium-Decorated Conductive Oxides

Name: Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder

ATO Composition: 90% SnO₂, 10% Sb₂O₃ (w/w)


Products:

Product Number	Particle Size	BET Surface area	Resistivity
77-0030	20 nm	$50 - 60 \text{ m}^2/\text{g}$	0.3 – 0.7 Ω•cm
77-0035	50 nm	40 – 50 m ² /g	0.05 – 0.08 Ω•cm
77-0040	100 nm	5 – 10 m ² /g	0.05 – 0.08 Ω•cm

Sold under license from Catalytic Innovations, LLC for research purposes only. US Patent Publication No. US20150021194 A1.

Applications: Oxidation catalysis, wastewater remediation, corrosion resistance, ORR scaffold in fuel cells, OER scaffold in electrolysis.

Right: Cyclic voltammogram of 50 nm ATO/het-WOC core/shell nanopowder operating in a test electrolyzer (built-in Hg/HgSO₄ reference) for oxygen evolution (blue) compared to a bare 50 nm ATO control (grey). Redox features of the molecular iridium species are present, as well as the catalytic wave for oxygen evolution. Activity persists for over 90 days.

