Strem Chemicals, Inc.

www.strem.com

$$
\begin{array}{ll}
\text { Catalog \# 26-0960 } & \begin{array}{l}
\text { (R)-(-)-1-[(S)-2-(Di(3,5-bis-trifluoromethylphenyl)phosphino)ferrocenyl]ethyldicyclohexylphosphine, } \\
\\
\\
\text { min. } 97 \%
\end{array}
\end{array}
$$

Note: Sold in collaboration with Solvias for research purposes only. Solvias Josiphos Ligand Kit component.
Technical Notes:

1. Ferrocenylphosphine ligands of the type $\operatorname{cpFecp}\left(\mathrm{PR}_{2}\right)\left({ }^{*} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{PR}_{2}^{\prime}\right)$ are a class of asymmetric ligands developed at Solvias in Basel, Switzerland ${ }^{1}$. Ligands of this type are currently used industrially in the stereoselective synthesis of commercial products ${ }^{2,3}$. A unique feature of these bidentate ligands is the presence of a fixed phosphine moiety and a stereogenic, functionalized side chain, which can be easily modified to accommodate electronic and steric requirements. Based on a versatile synthetic procedure starting with optically active ferrocenes of the type cpFecp $\left(\mathrm{PR}_{2}\right)\left({ }^{*} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{X}\right)\left[\mathrm{X}=\mathrm{OAc}\right.$ or $\left.\mathrm{NR} R_{2}\right]$, a variety of donor atoms can be introduced into the side chain. ${ }^{4}$ These ferrocene based phosphine ligands have wide application in the stereoselective hydrogenation of substituted acetamidoacrylates, enol acetates, β-ketoesters and simple alkenes ${ }^{5-9}$.
2. Useful as a ligand in Pd-catalyzed C-N bond-forming reactions.
3. Pd-catalyzed enantioselective alkylative desymmetrization of meso-succinic anhydrides.
4. Asymmetric hydrogenation of ketones and phosphinylketimines.
5. Michael addition of Grignard reagents to α, α-unsaturated esters and thioesters.
6. Boration of \forall, \exists-unsaturated esters and nitriles.
7. Reaction of aryl halides with ammonia.
8. Cu-catalyzed reduction of activated $\mathrm{C}=\mathrm{C}$ bonds with PMHS.
9. Regio- and enantioselective hydroboration of vinyl arenes.
10. Rh-catalyzed asymmetric ring-opening reactions of oxabicyclic alkenes.
11. 1,2-Migrations in Pd-catalyzed Negishi couplings with JosiPhos ligands.
12. Catalyst for the homodimerization of ketoketenes.
13. Ligand for the Rh catalyzed synthesis of lactones.
14. Ligand for the Cu-catalyzed synthesis of syn and anti γ-amino alcohols.

Tech. Note (1)
Ref. (3)

Tech. Note (1)
Ref. (5)

Tech. Note (3)
Ref. (12)

Tech. Note (4)
Ref. (13)
 Rh / L

$\mathrm{X}=\mathrm{CN}, \mathrm{COOR}$

ArX $+\quad \mathrm{NH}_{3}$
$\xrightarrow{\mathrm{Pd} / \mathrm{L}}$
ArNH_{2}

Tech. Note (8)
Ref. (17)
$\mathrm{X}=\mathrm{NO}_{2}, \mathrm{COMe}, \mathrm{CN}, \mathrm{Het}$

syn or anti (99\% ee)
References:

1. Solvias owns the patent rights for Strem products 26-1000, 26-1001, 26-1200, 26-1201, 26-1230, 26-1101, and for the Ir and Rh complexes of the aforementioned products, including the complexes of 26-1210 and 26-1211.
2. C\&E News, July 22, 1996, 38.
3. Angew. Chem. Int Ed., 1996, 35, 1475.
4. J. Org. Chem., 1972, 37, 3052.
J. Am. Chem. Soc., 1994, 116, 4062

Inorg. Chim. Acta., 1994, 222, 213.
Organometallics, 1996, 15, 860
Helv. Chim. Acta., 1995, 78, 883.
European Patents; EP 624587 A2 941117, EP 612758 A1 940831, EP 564406 A1 931006
10. Comprehensive Asymmetric Catalysis, 1999, Chapter 6.1, pg. 199-207.
11. Topics in Catalysis, March 2002, 19. (review)
12. J. Am. Chem. Soc., 2004, 126, 10248.
13. (a) Angew. Chem. Int. Ed,, 2007, 46, 7651. (b) Adv. Synth. Catal., 2002, 343, 68.
14. Angew. Chem. Int. Ed., 2005, 44, 2752.
15. Angew. Chem. Int. Ed., 2007, 47, 145.
16. J. Am. Chem. Soc., 2006, 128, 10028.
17. (a) Angew. Chem. Int. Ed., 2003, 42, 4793. (b) Angew. Chem. Int. Ed., 2006, 45, 2785. (c) J. Am. Chem. Soc., 2009, 131, 10386.
18. Angew. Chem. Int. Ed., 2006, 45, 17674. (review)
19. J. Am. Chem. Soc., 2004, 126, 9200.
20. Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 5455.
21. J. Org. Chem., 2009, 74, 135.
22. J. Org. Chem. 2011, 76, 7901
23. Angew. Chem. Int. Ed. 2011, 50, 7346.
24. Review: Privileged Ligands and Catalysts, 2011, 93
25. Angew. Chem. Int. Ed. 2011, 353, 376.

