Lipozyme® TL IM is a 1,3 specific lipase originating from Thermomyces lanuginosus and immobilized on a non-compressible silica gel carrier. Lipozyme® TL IM is a highly effective catalyst for interesterification and can rearrange fatty acids preferentially, but not uniquely in the 1- and 3- positions of the triglycerides. Lipozyme® TL IM exhibits a high degree of substrate selectivity allowing bulky side chains/large groups on the alcohol and acid part of the molecule.

Declared activity 250 IUN/g. Lipase that hydrolyzes ester bonds in glycerides. It is a 1,3 specific lipase which is immobilized on a non-compressible silica gel carrier into an immobilized granulate.

Novozymes Lipase Products

Storage

Kits should be optimally stored at 0-10°C/32-50°F. If stored above 25°C/77°F the samples should be used within 3 months.

Introduction

Lipases (EC Number 3.1.1.3) are one of the most commonly used classes of enzymes in biocatalysis. They have been used on a variety of substrates and show very broad substrate specificity. Lipases catalyze the hydrolysis of triacylglycerols to diacylglycerol, monoacylglycerol, glycerol and free fatty acids. The reaction reverses under anhydrous conditions and the enzyme is able to synthesize new molecules by esterification, alcoholysis and transesterification. All reactions can be performed with high regio- and enantioselectivity under mild reaction conditions.
Figure 1: Regioselective hydrolysis of a triacylglycerol.

Description and optimum usage conditions

<table>
<thead>
<tr>
<th>Enzyme No.</th>
<th>Strem Catalog Number</th>
<th>Product Name</th>
<th>Activity*</th>
<th>Formulation</th>
<th>pH optimum</th>
<th>Temp optimum</th>
<th>Substrate specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>06-3123</td>
<td>Novozym® 435</td>
<td>10000 PLU/g</td>
<td>Immobilized</td>
<td>pH 5-9</td>
<td>30-60°C</td>
<td>Esters and alcohols</td>
</tr>
<tr>
<td>2.</td>
<td>06-3155</td>
<td>Lipozyme® TL IM</td>
<td>250 IUN/g</td>
<td>Immobilized</td>
<td>pH 6-8</td>
<td>50-75°C</td>
<td>Esters</td>
</tr>
<tr>
<td>3.</td>
<td>06-3120</td>
<td>Lipozyme® RM</td>
<td>275 IUN/g</td>
<td>Immobilized</td>
<td>pH 7-10</td>
<td>30-50°C</td>
<td>Esters</td>
</tr>
<tr>
<td>4.</td>
<td>06-3105</td>
<td>Lipozyme® CALB L</td>
<td>5000 LU/g</td>
<td>Liquid</td>
<td>pH 5-9</td>
<td>30-60°C</td>
<td>Esters and alcohols</td>
</tr>
<tr>
<td>5.</td>
<td>06-3118</td>
<td>Palatase® 20000 L</td>
<td>20000 LU/g</td>
<td>Liquid</td>
<td>pH 7-10</td>
<td>30-50°C</td>
<td>Esters</td>
</tr>
<tr>
<td>6.</td>
<td>06-3140</td>
<td>Lipozyme® TL 100 L</td>
<td>100 KLU/g</td>
<td>Liquid</td>
<td>pH 7-10</td>
<td>20-50°C</td>
<td>Esters and diesters</td>
</tr>
<tr>
<td>7.</td>
<td>06-3100</td>
<td>NovoCor® AD L</td>
<td>6000 LU/g</td>
<td>Liquid</td>
<td>pH 5-9</td>
<td>30-60°C</td>
<td>Sterically hindered esters</td>
</tr>
<tr>
<td>8.</td>
<td>06-3125</td>
<td>Resinase® HT</td>
<td>50 KLU/g</td>
<td>Liquid</td>
<td>pH 5-8</td>
<td>up to 90°C</td>
<td>Esters</td>
</tr>
<tr>
<td>9.</td>
<td>06-3135</td>
<td>Novozym® 51032</td>
<td>15 KLU/g</td>
<td>Liquid</td>
<td>pH 7-10</td>
<td>35-70°C</td>
<td>Esters</td>
</tr>
</tbody>
</table>

* K = Kilo, LU = Lipase unit, PLU = Propyl Laurate Unit, IUN = Interesterification Unit.

1LU is the amount of enzyme activity which liberates 1 µmol of tritratable butyric acid from the substrate glycerol tributyrate per minute under defined standard conditions. 1LU is equal to 1IUN. 1 PLU is the amount of enzyme activity which generates 1 µmol of propyl laurate per minute under defined standard conditions.
Kinetic Resolution

Example 1. Kinetic resolution by transesterification of racemic alcohol

\[
\begin{align*}
\text{Racemic Alcohol} & \quad \xrightarrow{\text{Vinyl acetate Immobilised Lipase}} \quad \text{Racemic Alcohol} \\
\text{Acyl donor vinyl acetate (1:3 or 1:5 molar ratio compared to racemic alcohol)} & \quad \text{is added.}
\end{align*}
\]

- Racemic alcohol (1-2 mmol) is solubilized in organic solvent (10 mL Toluene (dry) or other solvent)*
- Acyl donor vinyl acetate (1:3 or 1:5 molar ratio compared to racemic alcohol) is added.
- Immobilized Lipase Enzyme \(1-3\) (50% wt/wt with regards to substrate) is added and the reaction is conducted under stirring.
- Typical reaction temperature is 25-50°C and typical reaction time is 36-72 hours, depending on substrate.
- The reaction product is recovered by removing the immobilized enzyme by filtration.

*Alternative solvents: methyl tert butyl ether (MTBE), n-hexane, iso-octane.

Example 2. Kinetic resolution of racemic alcohol by hydrolysis of acetoxy derivative

\[
\begin{align*}
\text{Racemic Alcohol} & \quad \xrightarrow{\text{Lipase, Phosphate buffer}} \quad \text{Racemic Alcohol} \\
\text{Racemic acetoxy ester (1-2 mmol)} & \quad \text{is solubilized/dispersed in potassium phosphate buffer (0.1 M, pH 7.5, 10 mL). For liquid substrates, emulsion or suspension will be formed. For solid substrates, solution is prepared by adding 10% v/v of organic solvent}^* \\
\text{Lipase Enzyme 1-9} & \quad \text{is added to the substrate solution (50% wt/wt for solid enzyme or 10-20% v/v with regards to buffer for liquid enzyme)}
\end{align*}
\]

- Racemic acetoxy ester (1-2 mmol) is solubilized/dispersed in potassium phosphate buffer (0.1 M, pH 7.5, 10 mL). For liquid substrates, emulsion or suspension will be formed. For solid substrates, solution is prepared by adding 10% v/v of organic solvent*
- Lipase Enzyme \(1-9\) is added to the substrate solution (50% wt/wt for solid enzyme or 10-20% v/v with regards to buffer for liquid enzyme)
- Reaction mixture pH is maintained at 7.5 by adjusting with 1N NaOH.
- Typical reaction temperature is 25-40°C and typical reaction time is 24-48 hours.
- The reaction product is recovered by extraction or filtration.

* *Solvent examples: IPA, acetone, tert-butanol, THF or acetonitrile*
Example 3. Dynamic kinetic resolution of racemic alcohols2,3,4

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{example3.png}
\caption{Racemic Alcohol}
\end{figure}

- Ruthenium catalyst* (0.05 eq with regards to substrate), Immobilized lipase 1-3 (50\% w/w with regards to substrate) and Na\textsubscript{2}CO\textsubscript{3} (1.0 eq. with regards to substrate) are dissolved in dry organic solvent (5 mL Toluene**) under inert atmosphere (N\textsubscript{2}) in a closed vessel.
- Dry toluene is added and resulting mixture is stirred.
- A THF solution of t-BuOK (0.05 eq with regards to substrate) is added to reaction mixture.
- After 30 min. of stirring, racemic alcohol (1-2 mmol) dissolved in toluene (5 mL) is added at 25-30°C and stirring continued in 10 min.
- Vinyl acetate (3.0 eq with regards to substrate) is charged to reaction mixture at 25-30°C.
- Reaction temperature is 50-55°C and typical reaction time is 36 hours.
- Reaction product is recovered by filtration through filter aid and the filtrate is concentrated to obtain crude product.

*Ruthenium catalyst options: Chlorodicarbonyl (1,2,3,4,5-pentaphenylcyclopentadienyl) ruthenium (η\textsubscript{5}C\textsubscript{5}Ph\textsubscript{5})Ru(CO)\textsubscript{2}Cl or Shvo catalyst - 1-Hydroxytetraphenylcyclopentadienyl-(tetrphenyl-2,4-cyclopentadien-1-one)-μ-hydrotetracarbonyldiruthenium(II)

** Solvents have to be dried before using (moisture content should be < 0.01%)

Example 4. Kinetic Resolution by transesterification of Racemic Amine5,6

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{example4.png}
\caption{Racemic Alcohol}
\end{figure}

- Acyl donor* ethyl acetate (5 mL) is charged to vessel under inert atmosphere (N\textsubscript{2})
- Racemic amine (1-2 mmol) and Immobilized lipase 1-3 (50\% wt/wt with regards to substrate) is added to ethyl acetate at 25-50°C under moderate stirring and inert atmosphere.
- Typical reaction temperature is 25-40°C and typical reaction time is 36-72 hours, depending on substrate.
- Reaction product is recovered by filtration, whereby immobilized enzyme is removed.

*Acyl donor solvent: α-methylbenzyl acetate, methylmethoxy acetate, ethyl acetate and methyl tert butyl ether.
Example 5. Kinetic resolution by hydrolysis of racemic carboxylic ester

- Racemic ester (1-2 mmol), organic solvent (5 mL MTBE or Toluene) and potassium phosphate buffer (0.1 M, pH 7.0, 5 mL) is homogenized by stirring. [Two layers will form once stirring is stopped; stir until substrate is soluble in organic phase. In case of immobilized enzymes, solid suspension is observed.]
- Lipase Enzyme (50% wt/wt with regards to substrate for solid enzyme 1-3 or 10-20% v/v with regards to solvent mixture for liquid enzyme 4-9) is added under stirring.
- Reaction mixture is maintained at pH 7.0 by adjusting with 1N NaOH.
- Typical reaction temperature is 20-35°C and typical reaction time is 24-48 hours, depending on substrate.
- Reaction product is recovered by extraction or filtration.

Example 6. Desymmetrisation of diesters

- Racemic diester (1-2 mmol) and potassium phosphate buffer (0.1 M, pH 7.0, 10 mL) is homogenized by stirring.
 - For liquid substrates emulsion or suspension will be formed.
 - For solid substrates a solution is prepared by adding additional solvents such as.
 - Biphasic reactions can be carried out by making solution in MTBE or toluene.
 - Solvent free reactions can be carried out in a solid suspension.
- Lipase Enzyme (50% wt/wt for solid enzyme 1-3 or 10-20% v/v with regards to buffer for liquid enzyme 4-9) is added and stirring continued.
- Reaction mixture is maintained at pH 7.5 by adjusting with 1N NaOH.
- Typical reaction temperature is 25-40°C and typical reaction time is 24-48 hours, depending on substrate.
- Reaction product is recovered by extraction or filtration.

*Solvent: acetone, tetrahydrofuran (THF) or acetonitrile.
Analytical Method Principles

In-process reaction monitoring:

Depending on substrate and product, different methods can be used for in process reaction monitoring.

- Thin Layer Chromatography (TLC) is a simple method for monitoring reaction progress and completion.
- To quantitatively estimate product formation and consumption of reactant, HPLC or GC can be used for monitoring.
- Chiral HPLC is recommended to estimate chiral purity or consumption of isomers of racemic mixture.
- Final chiral purity can be obtained by analyzing product isolated by using an appropriate chiral column.

Key parameters for Enantiomeric excess (ee) and Enantioselectivity (E) can be calculated from the areas in chiral HPLC:

\[
% \text{ee} = \frac{((R-S)/(R+S)) \times 100}{1} \text{ where } R \text{ and } S \text{ stand for the individual optical isomer in the mixture and } R + S = 1
\]

Where \(R = \text{area for R isomer} \) and \(S = \text{area for S isomer} \)

\[
E = \ln \left[\frac{1 - \frac{e.e_r}{e.e_p}}{1 + \frac{e.e_s}{e.e_p}} \right]
\]

Screening Procedure

Listed below is recommended equipment for conducting the screens, however, pH-stat system gives more consistent results.

<table>
<thead>
<tr>
<th>Simple equipment</th>
<th>Advanced equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction vessel (25 mL round bottom or Erlenmeyer flask or test tubes)</td>
<td>Thermostated reaction vessel (25 mL)</td>
</tr>
<tr>
<td>pH-meter or pH-paper (range 5 - 9)</td>
<td>Autotitrator/pH-stat system (pH-meter, automatic burette/addition funnel)</td>
</tr>
<tr>
<td>Burette or calibrated addition funnel</td>
<td>Recording device (e.g., x/y-plotter)</td>
</tr>
<tr>
<td>Propeller mixer or magnetic needle</td>
<td>Propeller mixer</td>
</tr>
</tbody>
</table>
Buffer Preparation

<table>
<thead>
<tr>
<th>pH</th>
<th>Volume of 1M K$_2$HPO$_4$ (mL)</th>
<th>Volume of 1M KH$_2$PO$_4$ (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>8.5</td>
<td>91.5</td>
</tr>
<tr>
<td>6.0</td>
<td>13.2</td>
<td>86.8</td>
</tr>
<tr>
<td>6.2</td>
<td>19.2</td>
<td>80.8</td>
</tr>
<tr>
<td>6.4</td>
<td>27.8</td>
<td>72.2</td>
</tr>
<tr>
<td>6.6</td>
<td>38.1</td>
<td>61.9</td>
</tr>
<tr>
<td>6.8</td>
<td>49.7</td>
<td>50.3</td>
</tr>
<tr>
<td>7.0</td>
<td>61.5</td>
<td>38.5</td>
</tr>
<tr>
<td>7.2</td>
<td>71.7</td>
<td>28.3</td>
</tr>
<tr>
<td>7.4</td>
<td>80.2</td>
<td>19.8</td>
</tr>
<tr>
<td>7.6</td>
<td>86.6</td>
<td>13.4</td>
</tr>
<tr>
<td>7.8</td>
<td>90.8</td>
<td>9.2</td>
</tr>
<tr>
<td>8.0</td>
<td>94.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Dilute combined 1M stock solutions to 1 L with distilled H$_2$O.

<table>
<thead>
<tr>
<th>pH</th>
<th>Volume of 1M Na$_2$HPO$_4$ (mL)</th>
<th>Volume of 1M NaH$_2$PO$_4$ (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>7.9</td>
<td>92.1</td>
</tr>
<tr>
<td>6.0</td>
<td>12.0</td>
<td>88.0</td>
</tr>
<tr>
<td>6.2</td>
<td>17.8</td>
<td>82.2</td>
</tr>
<tr>
<td>6.4</td>
<td>25.5</td>
<td>74.5</td>
</tr>
<tr>
<td>6.6</td>
<td>35.2</td>
<td>64.8</td>
</tr>
<tr>
<td>6.8</td>
<td>46.3</td>
<td>53.7</td>
</tr>
<tr>
<td>7.0</td>
<td>57.7</td>
<td>42.3</td>
</tr>
<tr>
<td>7.2</td>
<td>68.4</td>
<td>31.6</td>
</tr>
<tr>
<td>7.4</td>
<td>77.4</td>
<td>22.6</td>
</tr>
<tr>
<td>7.6</td>
<td>84.5</td>
<td>15.5</td>
</tr>
<tr>
<td>7.8</td>
<td>89.6</td>
<td>10.4</td>
</tr>
<tr>
<td>8.0</td>
<td>93.2</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Dilute combined 1M stock solutions to 1 L with distilled H$_2$O.

References

1. H. V. Ferreira, L. C. Rocha, R.P. Severino and André L. M. Porto *Molecules* 2012, 17, 8955-8967
3. Mahn-Joo Kim, Yangsoo Ahn and Jaiwook Park *Current Opinion in Biotechnology* 2002, **13**:578–587
6. Mahn-Joo Kim, Won-Hee Kim, Kiwon Han, Yoon Kyung Choi, and Jaiwook Park *Org. Lett.*, 9, No. 6, **2007**

The products and services described in this document are the responsibility of Novozymes Biopharma DK A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark (company registration no. 29603537) - a wholly owned subsidiary of Novozymes A/S. The information in this document is based on data we believe to be reliable. They are offered in good faith, but without warranty, as conditions and methods of use of the products are beyond our control. Furthermore, laws, regulations, and/or third-party rights may prevent the recipient from using the information herein in a given manner. Thus, the information contained herein is provided “AS IS” and Novozymes makes no representation or warranty whatsoever with regard to said information, hereunder the accuracy, fitness for a particular purpose, noninfringement of intellectual property rights, or regulatory/legal compliance, unless otherwise agreed in writing.