

Progress beyond

Phosphorus Specialties: the cornerstone of synthesis for pharmaceutical applications

Eamonn Conrad, Ph.D., Global BD Manager Dino Amoroso, Ph.D., NA Account Manager William Stibbs, Ph.D. Senior BD Manager

Overview

Solvay

- Solvay Phosphorus Specialties, Strem Chemicals Inc. Partnership
- Chemistry for the Manufacture of Phosphine Ligands
- Applications in Pharmaceutical Catalysis
- Applications in Life Sciences
- Summary and Questions

*Solvay partners with Strem Chemicals for sample distribution

Strem Chemicals, Inc.

Solvay partners with Strem Chemicals for sample distribution!

Corporate Headquarters Newburyport, MA USA

ISO 9001:2015

CERTIFIED

European Headquarters Strasbourg, France Established in 1964

- More than 55 years of experience in manufacturing and handling high quality inorganics and organometallics
- 5,000+ specialty chemicals available
- Laboratory Chemicals for R&D
- cGMP Products Manufactured in Kilo-lab Suites
- High Pressure Materials
- Custom Synthesis Projects
- Customers include:
 - Academic, industrial and government R&D laboratories
 - Commercial scale businesses in the pharmaceutical, microelectronics, chemical & petrochemical industries

Who We Are

Dedicated on-site technical service and applications expertise to support our customers' needs

Deep customer relationships and ongoing collaborations to solve demanding industry challenges

Mining Solutions

Premier supplier of specialty reagent-based solutions to the mining industry with more than 100 years of commitment

Phosphorus Specialties

Global supplier of differentiated products and technologies based on phosphorus chemistries

Polymer Additives

SOLVAY

Leader in the UV stabilization of polymers with more than 60 years of experience

page 4

Phosphorus Specialties

Global Leader in Phosphorus Chemistry

Innovation:

160 years of know-how and innovation in phosphorus chemistry

Secure and consistent supply source:

Stringent quality control standards and timely order fulfillment due to global footprint and supply chain

Partnership:

We work closely with customers to translate their needs into concrete solutions

Scale-up capabilities:

From R&D to large scale; largest capacity in the industry

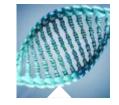
Differentiated products and technologies:

We offer a wide range of phosphorusbased chemistry to meet precise application requirements

Our Portfolio

Agriculture ECO₂FUME[®] | VAPORPH3OS[®]

 Cylinderized phosphine gas fumigants that efficiently eradicate insects at all life stages


✓ Used on post-harvest products or storage structures

Textiles PROBAN[®] | THPC

 P-chemistry imparting flame-resistance to textiles & garments

✓ THPC for leather treatment applications

Life Sciences

- Specialty phosphorus compounds for applications requiring stringent purity profiles
- Catalysis; oligonucleotide synthesis; reagents; intermediates

SOLVAY

Electronics CYPURE® | CYTOP® | CYPHOS® IL

- ✓ High-purity phosphine gases & derivatives used throughout the electronics supply chain
- Dopants for LED & semi-conductors; capping ligands; solvents; quantum dot materials

Biocides TTPC | THPS

✓ TTPC & THPS for control of microorganisms*

 Oilfield & industrial wastewater treatment applications

Chemical Processing

CYPHOS[®] | CYTOP[®] | RhodaPhos[®]

- ✓ Phosphine derivatives used in the manufacture of chemical compounds
- Organic extraction, catalysis, ligands and additives

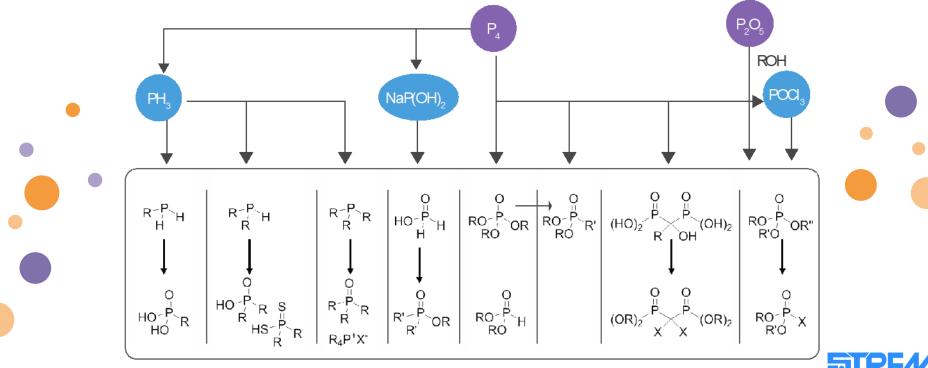
Plastics, Epoxy & Coating CYPHOS[®] | AMGARD[®] | Albritect[®]

- Phosphorus additives optimizing the performance of plastics, epoxy, and coating systems
- Epoxy resin curing; flame retardant polymers; surface coating treatment; catalysts

Other

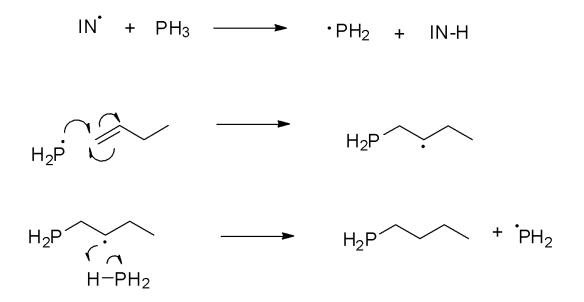
Phos Acid | CYTOP* | CYPHOS* IL

- Phosphorus-based chemistries for commodity and niche applications
- Metal extraction & recycling; liquid extractions; ionic liquids; fertilizer; other applications


Progress beyond

Chemistry for the Manufacture of Phosphine Ligands

Phosphorus Specialties Product Platform



CHEMICALS, INC. Samples available from Strem

Foundational Chemistry

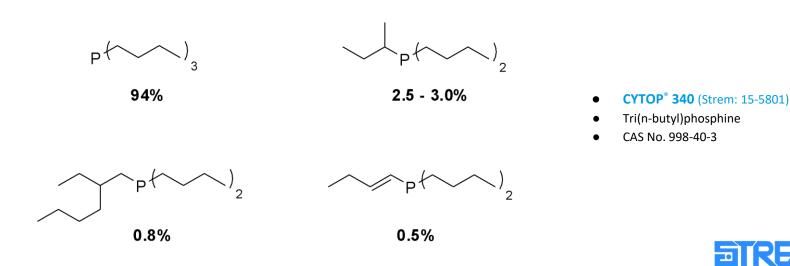
- Solvay
- Free radical addition of PH₃ to olefins is a major component of Solvay's alkylphosphine derivatives technology

(1)

(2)

Rahut, M. et.al., J. Org. Chem. 1961, 26, 5138

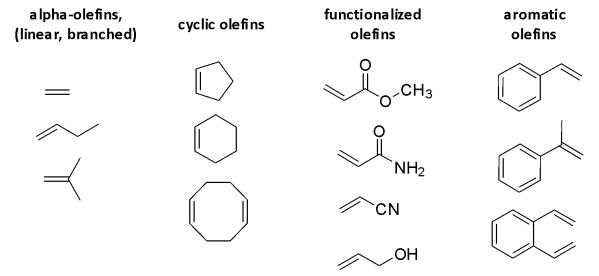
Pellon, J., J. Am. Chem. Soc. 1961, 83, 1915



Phosphorus Specialties

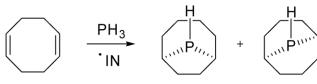
Example – CYTOP[®] 340

- Produce distribution is dependent on the nature of the olefin
- Initiator fragments and some olefin oligomers are formed
- Olefin diversity translates to product diversity

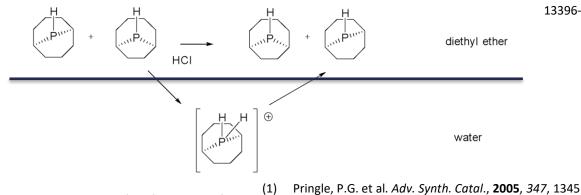


Foundational Chemistry – Olefin Examples

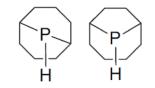
• Product distribution is dependent on the nature of the olefin



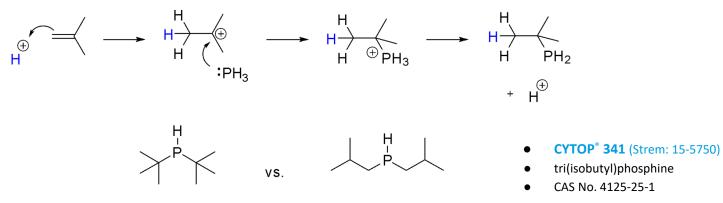
 Reactivity of olefins and the product compositions depend on number of double bonds and positions



CYTOP[®] 282T – Bulky Phosphine Ligand Precursor


- CYTOP[®] 282T– sterically bulky secondary phosphine
- Mixture of 9-phosphabicylononane [3.3.1] and [4.2.1]
- Synthetic route provides mixture of both isomers

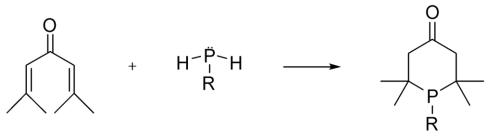
Isomers can be separated via selective protonation



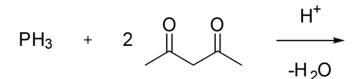
- **CYTOP**[®] **282T** (Strem: 15-7535)
- 9-phosphabicyclononane [3.3.1] and [4.2.1]
- CAS No. 13887-02-0/ 13396-80-0

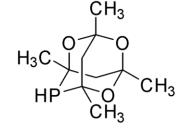
Acid Catalyzed Addition to Olefins

 Acid-catalyzed addition to olefins allows access to useful products not accessible through free radical routes



- Tri-*tert*-butylphosphine cannot be prepared under acid catalysis
- Tri-iso-butylphosphine is readily accessible (CYTOP[®] 341 [Strem: 15-5750])




Other Chemistries

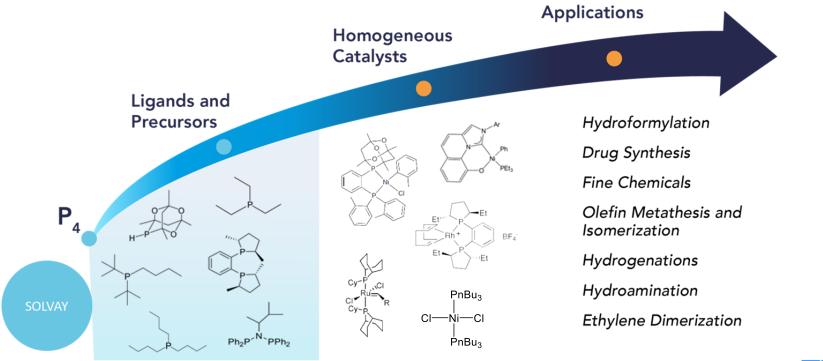
Michael Addition to activated olefins

• Addition to 2,4-pentadione

- **CYTOP**[®] **216X** (Strem: 15-1310)
- 1,3,5,7-tetramethyl-2,4,6-trioxa-8phosphaadamantane
- CAS No. 26088-25-5

CHEMICALS, INC. Samples available from Strem

- (1) Welcher, J. Org. Chem. 1962, 27, 1824
- (2) Epstein, B, J.Am.Chem.Soc., **1961**, 83, 3279


Phosphorus Specialties

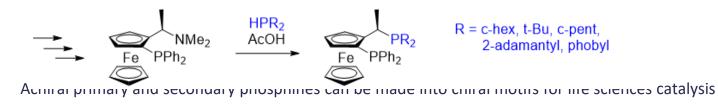
Applications in Pharmaceutical Catalysis and Life Sciences

Solvay in Phosphorus Catalysis

SOLVAY

Why the interest in Phosphorus for Catalysis?

- Diversity of Structure, tunability (steric, electronic), thermal stability
- Liquid materials for ease of handling (product stewardship, safety, etc.)
- Established manufacturing routes, large scale availability
- Key balances between P ligands and metals employed (Cr, Co, Rh, Ni, etc.)
 - Solubilize and stabilize organometallics


Solvay is a leader in supplying phosphine ligands to the market safely!



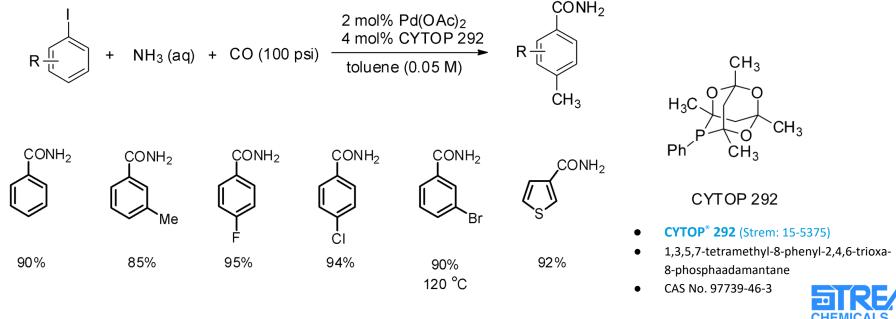
Ligand Diversity

Multifunctional building blocks

- Ability to tune ligand/catalyst properties via changes in ligand composition is a key feature in all successful ligand families ٠
- Modularity leads to breadth in applications i.e. Josiphos[™] ٠

.

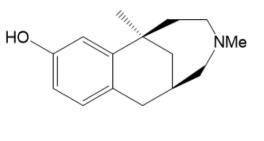
Phosphorus Specialties

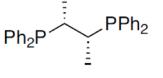

Aminocarbonylation

 Importance of Pd-catalyzed coupling methods cannot be understated – they are critical in the preparation of many important products

SOLVAY

Samples available from Strem


• Significant limitation is the direct use of ammonia for amination protocols – catalyst deactivation and uncontrolled amination


Carbon-Carbon Bond Formation

Synthesis of (-)-eptazocine

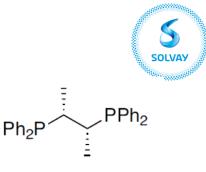
- Bulky Chiral Bidentate Ligand
- (2R,3R)-(+)-bis(diphenylphosphino)butane
- Support several industrial and academic relevant chiral transformation
- Synthesis of (-)-eptazocine, commercially available analgesic
- Construction of both benzylic quaternary carbons and C-CN bond in a single operation (arylcyanation)

(-)-eptazocine

- RhodaPhos[®] CP100R (Strem: 15-0165)
- (2R,3R)-(+)-Bis(diphenylphosphino)but ane
- CAS No. 74839-84-2

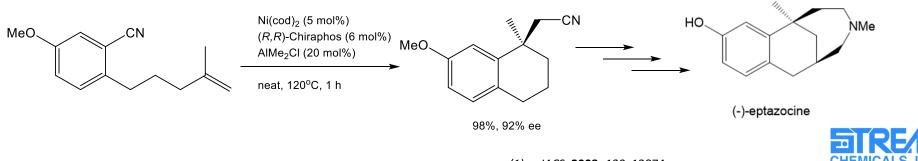
JACS. 2008. 130. 12874

SOLVA


Phosphorus Specialties

(1)

Carbon-Carbon Bond Formation


Synthesis of (-)-eptazocine

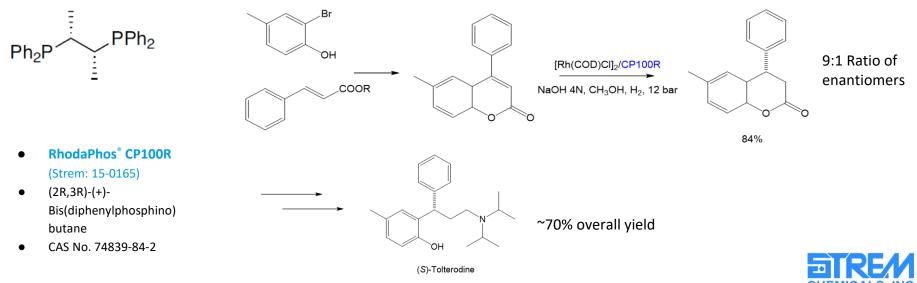
- Chemistry was shown effective with a variety of ligands, however only RhodaPhos[®] CP100R gave yields as high as 98% and ee% of 92%
- 7 step synthesis

Samples available from Strem

- RhodaPhos[®] CP100R (Strem : 15-0165)
- (2R,3R)-(+)-Bis(diphenylphosphino)but ane
- CAS No. 74839-84-2

Phosphorus Specialties

(1) JACS. 2008, 130, 12874


Chiral Hydrogenations

Synthesis of (S)-Tolterodine

Samples available from Strem

- (*R*)-Tolterodine is a potent treatment for overactive bladder disorder (muscarinic antagonist), while (*S*)-Tolterodine is weaker with less side effects (dry mouth, tachycardia)
- Efficient and short enantioselective synthesis (84% isolated yields, 80 ee% etc.) (4 step synthesis)
- Commonly referred to as "Chiraphos"

Phosphorus Specialties

(1) J. Org. Chem. 2007, 72, 6056

•

Chiral Hydrogenation

API Synthesis

- DuPhos ligands are among the most extensively studied for chiral hydrogenations
- Broad range of substrates with direct relevance to important target molecules

RhodaPhos[®] (R,R) MethylDuPhos

- 1,2-Bis(2R,5R)-2,5-dimethyl(phospholano)benzene;
- CAS No. 393801-72-4;

- Leveraged in a concise, enantioselective synthesis of pregabalin (anti-convulsant)
- Key step is the asymmetric hydrogenation of the 3-cyano-5-methylhex-3-enoic acid salt shown.

MeDuPhos/Rh

 H_2

CN

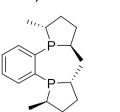
Θ

⊕ t-BuNH₃ Pregabalin (Lyrica)

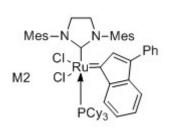
CN

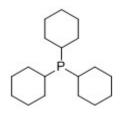
 \oplus

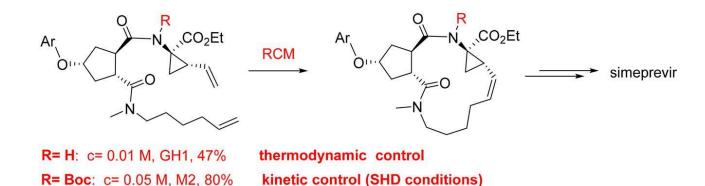
t-BuNH₃


NH₂

⊖ CHO₂


>97% e.e.

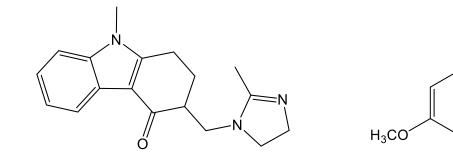


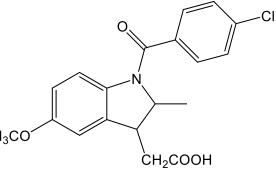

Metathesis

Synthesis of HCV Protease Inhibitor

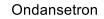
- **CYTOP[®] 366** (Strem: 15-6152)
- Tricyclohexylphosphine
- CAS No. 2622-14-2

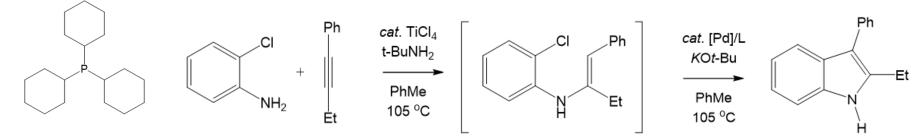
- Switch to Boc derivative and M2 catalyst improved space-time-yield 15 fold (14 Kg / m^3 / hour vs. 0.86).
- GH1 and M2 are both Ru based RCM Catalysts with CYTOP[®] 366
- Trials were compared to 5 other RCM catalysts




Indole Synthesis

Important class of compounds for pharma


- Indole derivatives represent one of the most important structural classes in drug discovery
- Indoles are prevalent in both biologically active compounds as well as natural products leading to strong demand for synthetic methodologies
- Challenging via traditional routes when substituting at C5 (such as Fischer Indole synthesis)
- Metal catalysts with phosphine ligands are attractive solution

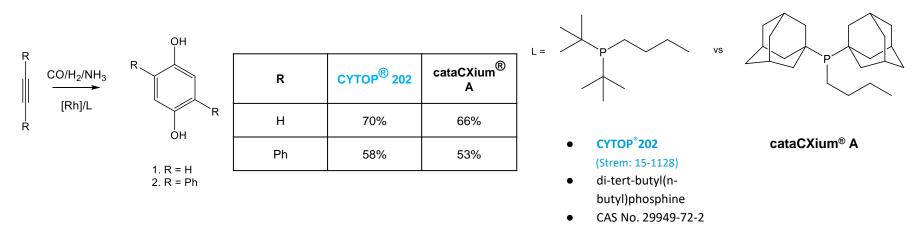


Indole Synthesis - Important class for Pharma

Important class of compounds for pharma

- Phosphine ligand supported palladium coupling is an effective route to substituted indoles
- Tricylohexylphosphine (CYTOP[®] 366) gave higher yields (71%) in intramolecular cyclizations to form indole compared to carbenes (55%), triphenylphosphine (2%), and other monophosphine biaryl ligands (10-55%) in the presence of base

(1)

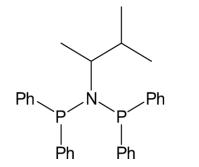

Tetrahedron 2008, 50, 769-777

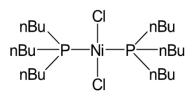
- **CYTOP[®] 366** (Strem: 15-6152)
- Tricyclohexylphosphine
- CAS No. 2622-14-2

Hydroquinone Synthesis

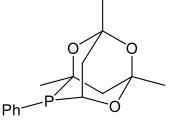
Cost effective and practical catalysis solutions

- Synthesis of hydroquinones are industrially relevant in pharmaceuticals
- CYTOP[®] 202 is a bulky phosphine ligand suitable for cyclocarbonlyation
- For ring forming reaction from alkynes, CYTOP[®] 202 had performance improvement over cataCXium[®] A at a significant ligand cost advantage


• CYTOP[®] 202 outperforms in the synthesis of substituted hydroquinones



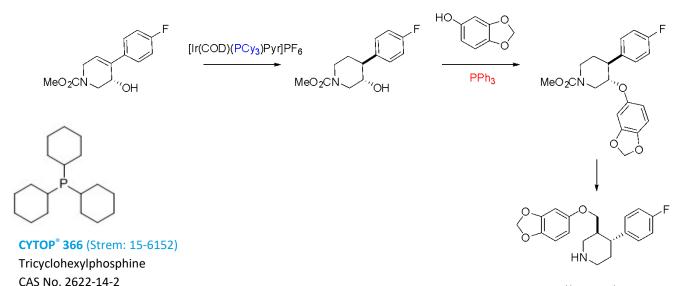
Other Phosphines, Catalysts and Applications



- RhodaPhos[®] PNP12M (Strem: 15-0745)
- N,N'-bis(diphenylphosphino)-1,2-dimethyl propylamine
- CAS No. 872187-64-9
- Olefin Oligomerization Ligand

- RhodaPhos[®] NICAT (Strem: 28-0075)
- Dichlorobis(tributylphosphine) nickel
- CAS No. 15274-43-8
- Olefin Oligomerization

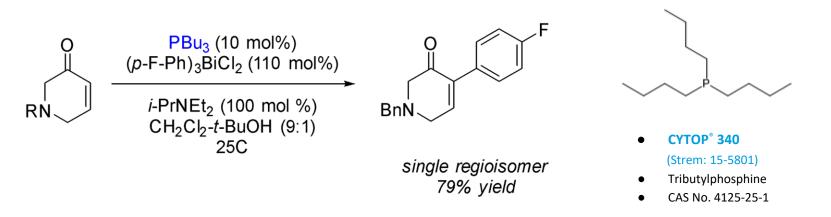
- CYTOP[®] 292 (Strem: 15-5375)
- 1,3,5,7-tetramethyl-8-phenyl-2,4,6-trioxaphosphaadamantane
- CAS No. 97739-46-3
- Telomerization Ligand



Total Synthesis of PAXIL

- Total synthesis of paroxetine (PAXIL) serves as an excellent example of the utility of P-based reagents in synthesis
 - Ir-catalysed hydrogenation of the tri-substituted olefin using PCy₃ (CYTOP[®] 366)
 - Coupling to sesamol using Mitsunobu conditions
 - Option to use alkylphosphine (e.g. CYTOP [®] 330) for water-soluble by-products

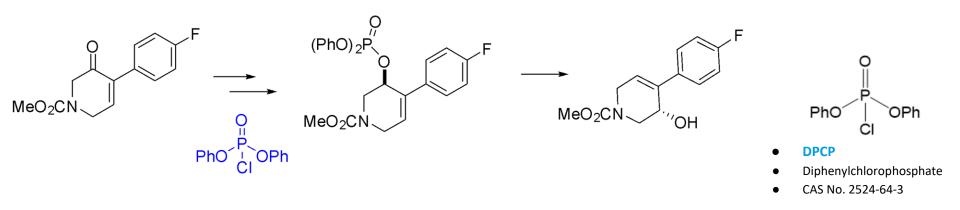
(1)


(-)-paroxetine

Krische et al., Tetrahedron, 2006, 62, 10594

Total Synthesis of PAXIL

- Solvay
- Total synthesis of paroxetine (PAXIL) serves as an excellent example of the utility of P-based reagents in synthesis
 - Key step is the phosphine-catalyzed enone α -arylation
 - Tri-*n*-butylphosphine = CYTOP[®] 340
 - This protocol has been applied to a range of cyclic enones and β-substituted enals



Total Synthesis of PAXIL

- Total synthesis of paroxetine (PAXIL) serves as an excellent example of the utility of P-based reagents in synthesis
 - anti-Selective copper-mediated allylic substitution employing DPCP
- Chiral alcohol intermediate in 92% ee

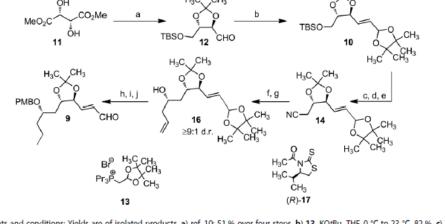
Phosphorus Specialties

Homologation of Aldehydes

DualPhos

- Trialkylphosphines, like CYTOP[®] 330, have been successfully used to develop 2-carbon homologation strategies
- The approach has been applied to the synthesis of unsaturated aldehydes such as phomolide G, H

CYTOP[®] **330** (Strem: 15-7610)


- tri-*n*-propylphosphine;
- CAS No. 2234-97-1;
- Applied in the development of **DualPhos**; reagent for the 2-carbon homologation of aldehydes;

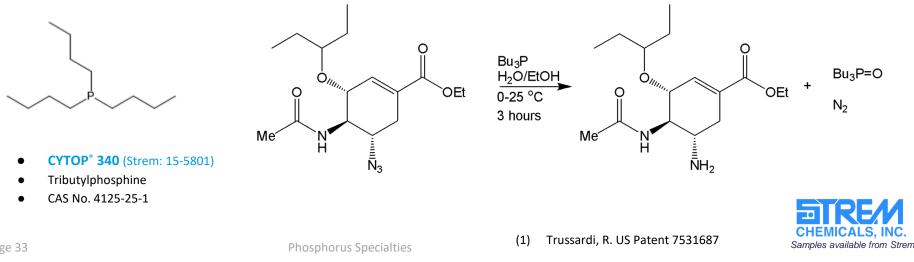
Pr₂P

 Br^{\in}

• DualPhos:

McNulty et al., *Green Chem.*, **2013**, 15, 3146 McNulty et al., *R. Soc. Open Sci.* **2016**, 3, 160374. McNulty et al. *Eur. J. Org. Chem.* **2017**, 29.

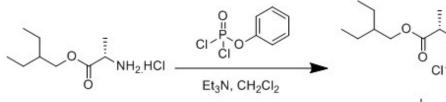
Scheme 2. Reagents and conditions: Yields are of isolated products. **a**) ref. 10; 51 % over four steps. **b**) **13**, KOtBu, THF, 0 °C to 23 °C, 82 %. **c**) TBAF, THF, 0 °C, 93 %. **d**) PPh₃, I₂, 1*H*-imidazole, THF, 0 °C to 23 °C, 87 %. **e**) KCN, TBAI (10 mol-%), DMSO, 23 °C, 67 %. **f**) Allylzinc bromide, THF, 23 °C, 81 %. **g**) LiAlH₄, LiI, Et₂O, -100 °C, 92 % ($dr \ge 9:1$). **h**) (PPh₃)₃RuCl₂, H₂ (1 atm), benzene/EtOH (1:1 v/v), 23 °C, 94 %. **i**) NaH, PMBCl, DMF, 0 °C to 23 °C, 84 %. **j**) FeCl₃-6H₂O, acetone, 23 °C, 63 %. TBAF = tetrabutylammonium fluoride, TBAI = tetrabutylammonium iodide, PMB = *p*-methoxybenzyl.

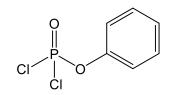


page 33

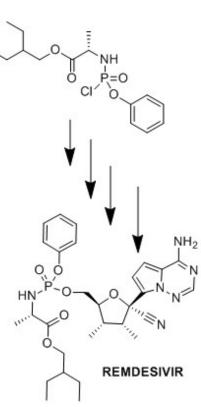
Staudinger Reaction

Synthesis of Tamiflu®

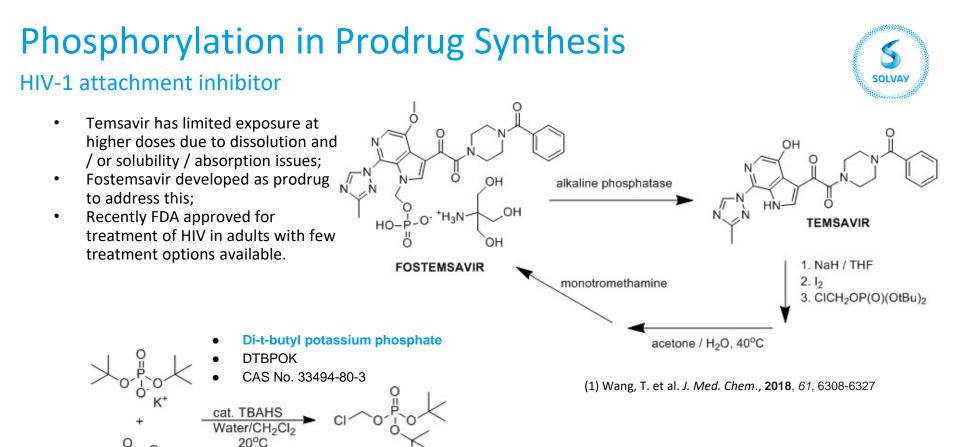

- Tributylphosphine successfully applied to total synthesis of oseltamivir phosphate (Tamiflu[®]) ۲
- Improvements over conventional hydrogenation with Raney Nickel: ۲
 - Fewer impurities
 - No hydrogenation of cyclohexene •
 - Easier to process (no filtration) ٠



Phosphorylation in Prodrug Synthesis


Antiviral Remdesivir

- Phenyl dichlorophosphate
- PDCP
- CAS No. 770-12-7



- Monophosphate nucleosides are important precursors to triphosphate metabolites as the first phosphorylation is often rate limiting;
- PDCP is often used as a phosphorylating agent for alcohols and amines.

(1) Felfer, U. et al. US 8,691, 798, April 8th, 2014

iPr₂N

Inclisiran siRNA for cholesterol reduction (Novartis

Phosphitylation in Oligonucleotide Synthesis

Phosphoramidites of DNA and RNA bases used to build

<10 approved drugs for small indications;

Used in diagnostics (PCR, gene sequencing);

Therapeutics (ASO, siRNA, LNA);

bet the house on this one).

• RhodaPhos^(R) Phos Reagent (Strem: 15-0695)

- 2-Cyanoethyl N,N,N',N'tetraisopropylphosphoramidite
- CAS No. 102691-36-1

Emerging area

•

oligos;

•

NiPr₂

Disulfide Bond Reduction

Gene Sequencing

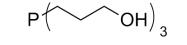
- DNA is fragmented, amplified, attached to a DNA sequence primer & affixed as a highdensity array of spots on a glass chip.
- Array is subjected to reagents containing DNA bases modified with a dye and an end cap.

CYTOP® 208 (Strem: 15-6375)

- tris(3-hydroxypropyl)phosphine ("THPP");
- CAS No. 4706-17-6;
- Quicker, more complete cleavage

Disulfide, 1a-1g

H-N-Boc

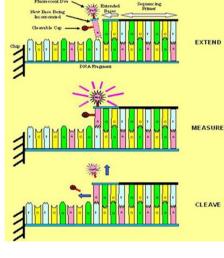

• No odor

Entry

2

3

• Stable over wide pH range


THPP

99°

82^e

94^f

(1)

Phosphorus Specialties

2c

Thiol, 2a-2g

McNulty et al., Bioorg Med Chem Lett, 2015, 25, 4114.

DTT

30^e

35°, 85^d

Reducing agent

TCEP

77^c

 25^{e}

90^f

Why Work With Solvay?

- Get the speed, flexibility and intimacy of a small company with strong corporate support
- Ability to meet demanding purity, supply and scale-up needs, successfully transitioning chemistries from lab quantities to industrial scale production
- Proven track record of developing innovative and practical routes to market
- Diverse and expanding R&I organization prepared to support today's applications and tomorrow's innovations
- Safe handling and processing of laboratory and large scale air-sensitive material
- Logistics, registration support, toxicology support

Together, let's unlock the potential of phosphorus chemistry to support your sustainable growth

Thank you.

Dino Amoroso, Ph.D., North American Account Manager dino.amoroso@solvay.com

William Stibbs, Ph.D., Senior Business Development Manager william.stibbs@solvay.com

Eamonn Conrad, Ph.D., Global Business Development Manager eamonn.conrad@solvay.com

Progress beyond

Phosphorus Specialties: the cornerstone of synthesis for pharmaceutical applications

Samples available from Strem

Industrial Scale from Solvay

Innovation:

160 years of know-how and innovation in phosphorus chemistry

Partnership:

We work closely with customers to translate their needs into concrete solutions

Differentiated products and technologies:

We offer a wide range of phosphorusbased chemistry to meet precise application requirements