A Publication of Strem Chemicals, Inc. THE STREM CHEMIKER VOL. XXIX NO. 1 July, 2016

PCN-250: Highly Stable Framework with Extremely High Gas Uptake by Hongcai Joe Zhou and Dawei Feng

Heterogenized Molecular Iridium Complexes for Catalytic Water Oxidation and C-H Activation by Stafford W. Sheehan and Ulrich Hintermair

Table of Contents

Biographical Sketches:			
HongcaiJoeZhou StaffordW.Sheehan			1 1 1
Article 1: PCN-250: Highly Stable	Frame	workwith Extremely High Gas Uptake	2-7
MOF's Available from Strem		· · · · ·	8-12
Article 2: Heterogenized Molecul Catalytic Water Oxidati		um Complexes for C-H Activation	13-21
•		d Products	22-24
-		niker XXVIII (June 2015)	25-77
			78-80
		XXVIII (June 2015)	
, ,	0	Kit	78 78
		e	78
			79
Chiral SpiroSAP Ligand Kit			80
New Products Coming Soon			81-84
Available Booklets			85
American Chemical Society Award	2016	Prof. Vincent L. Pecoraro, University of Michigan	
for Distinguished Service in the	2015	Prof. Kim R. Dunbar, Texas A&M University	
Advancement of Inorganic Chemistry	2014	Prof. T. Don Tilley, University of California, Berkeley	
	2016	Prof. Curtis P. Berlinguette, University of British Colum	bia
Canadian Society for Chemistry Award for Pure or Applied Inorganic Chemistry	2015	Prof. Muralee Murugesu, University of Ottawa	
	2014	Prof. Paul J. Ragogna, University of Western Ontario	
Headquarters			
Strem Chemicals, Inc. 7 Mulliken Way Newburyport, MA 01950 USA		Tel: (978) 499-1600 Fax: (978) 465-3104 Toll free numbers below US & Canada only Tel: (800) 647-8736 Fax: (800) 517-8736 Email: info@strem.com	
European Offices			
15, rue de l'Atome Zone Industrielle F-67800 BISCHHEIM, France		Tel: +33 (0) 3 88 62 52 60 Fax: +33 (0) 3 88 62 26 81 Email: info.europe@strem.com	
Postfach 1215 D-77672 KEHL, Germany		Tel: +49 (0) 7851 75879 Fax: +33 (0) 3 88 62 26 81 Email: info.europe@strem.com	
Strem UK An Independent Distributor of Strem Chemicals Products Newton Hall Town Street, Newton Cambridge, CB22 7ZE UK	5	Tel: 0845 643 7263 Fax: 0845 643 7362 Email: enquiries@strem.co.uk	
©Copyright 2016 by The Strem Chem Vol. XXVIV No.1 CHEMICALS, INC. June, 2016	iker	www.strem.com	n y

Biographical Sketches

Dawei Feng

Dawei Feng graduated from Texas A&M University with a Ph.D. in 2015. At TAMU he was the Thomas J. Hairston Memorial Graduate Scholarship winner; his Ph.D. advisor was Dr. Hongcai Joe Zhou. He is now at Stanford University as a postdoctoral fellow with Dr. Zhenan Bao.

Hongcai Joe Zhou

Hongcai Joe Zhou graduated from Texas A&M University with a Ph.D. in 2000. At TAMU he was the George W. Kunze Prize winner; his Ph.D. advisor was Dr. F.A. Cotton. He then spent two years at Harvard University as a postdoctoral fellow with Dr. R. H. Holm before joining the faculty of Miami University in 2002. Professor Zhou's awards include a Research Innovation Award from Research Corporation in 2003, an NSF CAREER Award in 2005, a Cottrell Scholar Award from Research Corporation in 2005, the 2006 Miami University Distinguished Scholar -Young Investigator Award, and the 2007 Faculty Excellence Award from Air Products and Chemicals, Inc. Dr. Zhou and his research group moved to Texas A&M University in the summer of 2008. He is currently an Associate Editor for the ACS journal Inorganic Chemistry. He was appointed a full professor in 2008, a Davidson Professor in Science in 2014, and a Robert A. Welch Chair in Chemistry in 2015.

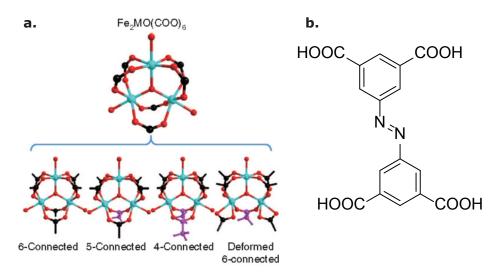
Stafford W. Sheehan founded and leads Catalytic Innovations (http://cat.aly.st/), a company that manufactures electrochemical materials and develops electrochemical process technologies with engineering partner Waste Hub (www.waste-hub.com). He holds a BS and MS in Chemistry from Boston College and Yale University, respectively, and completed his PhD in Physical Chemistry as an NSF Graduate Research Fellow at Yale University. Prior to his scientific career, he worked in IT and software development where he founded Dream8 Inc and, as its CEO, led it to a successful acquisition. He was an NSF awardee to the 63rd Lindau Nobel Laureate Meeting, one of the 2015 SciFinder Future Leaders in Chemistry, and named one of Forbes "30 under 30" in the Energy sector in 2016.

Ulrich Hintermair is an independent Whorrod Research Fellow at the Centre for Sustainable Chemical Technologies (CSCT) at the University of Bath, where he has been a faculty member since 2013. Dr. Hintermair's research group works on applied catalysis with metal complexes to develop more sustainable processes and alternative energy conversion schemes in a multi-disciplinary approach. He received a dual education in Chemistry and Chemical Engineering from schools in Germany, France and the UK. During his time at Yale University as Humboldt Postdoctoral Fellow with Prof. Robert Crabtree, he was involved in the development of Ir-based oxidation catalysts, a technology that was patented and spun out into Catalytic Innovations, for which he now acts as Chief Scientific Advisor.

PCN-250: Highly Stable Framework with Extremely High Gas Uptake

Dawei Feng, Kecheng Wang, Zhangwen Wei, Ying-Pin Chen, Cory M. Simon, Ravi K. Arvapally, Richard L. Martin, Mathieu Bosch, Tian-Fu Liu, Stephen Fordham, Daqiang Yuan, Mohammad A. Omary, Maciej Haranczyk, Berend Smit, & Hong-Cai Zhou

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA. Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77842, USA Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, USA Department of Chemistry, University of North Texas, Denton, Texas 76203, USA Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 50F-1650, Berkeley, California 94720-8139, USA State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, P. R. China Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fe'de'rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland zhou@chem.tamu.edu


Introduction

Metal–organic frameworks (MOFs), as inorganic-organic hybrid materials based on coordination bonds, are usually less stable than covalent bond based materials. Thus, the stability of MOFs plays a vital role in real world applications.¹⁻⁴. The chemical stability of MOFs, which is defined as the resistance to reactive chemicals, is essential to a number of applications including separations, carbon capture, gas storage and catalysis⁵⁻¹⁵. MOFs that are robust, can be easily scaled up, are moisture resistant and possess high gas storage capacity are needed for the commercialization of MOFs. Nevertheless, synthesizing stable MOFs with appropriate porosity and internal surface properties has always been challenging. Moisture resistant MOFs, consisting of high-valence metals, have been made by 'one-pot' synthesis. That makes it hard to control the metal nodes and therefore the topology and structure of the MOFs¹⁶.

Preparing robust MOFs via a conventional one-pot synthesis method may be problematic due to the fact that an unpredictable geometry of metal clusters could be generated and even amorphous products could be seen. That makes the rational design of MOFs difficult¹⁷. To solve these problems, we use a universal approach, which is based on the kinetic and thermodynamic control of MOF crystallization, of synthesizing Fe-MOF single crystals with pre-synthesized metal building blocks [Fe₂M(μ_3 -O)(CH₃COO)₆] (M=Fe^{2+,3+}, Co²⁺, Ni²⁺, Mn²⁺, Zn²⁺). In summary, 34 different Fe-MOF large single crystals were synthesized. Among these MOFs, PCN-250(Fe₂CO) (PCN stands for porous coordination network), shows very high total H₂ volumetric uptakes of 60 g L⁻¹ at 40 bar and 77 K. It also exhibits high total CH₄ uptakes of 200V STP/V at 35 bar and 298 K^{18, 19}.

Simplification of MOFs growth using preformed [Fe₂M(µ₃-O)(CH₃COO)₆]

 $M_3(\mu_3-O)(COO)_6$ (M= Cr, Al, Sc, V, In etc.) is one of the most common secondary building units (SBUs) that is a trivalent metal cluster in MOFs²⁰. We used [Fe₂M(μ_3 -O)(CH₃COO)₆] as the reactant and acetic acid as the competing reagent to synthesize Fe-MOFs. These metal clusters have great solubility in common solvents, which increases their feasibility as a reactant. In terms of stability, the strong electrostatic interaction between Fe³⁺ and μ_3 -O², the [Fe₂M(μ_3 -O) (CH₃COO)₆] cluster is inherently stable to preserve the integrity of the core during carboxylate substitution process on the periphery under solvothermal conditions. Moreover, the D_{3h} cluster has six carboxylate arms in a trigonal prismatic geometry, which enables formation of 3D frameworks through simple bridging.

Figure 1: Different connecting modes and organic linkers used. (a) Four different connecting modes of the [Fe₂M(μ_3 -O)] cluster. Carboxylates on ligands and terminal acetates are represented by black and purple, respectively. (b) Ligand used in constructing PCN-250.

The amount of acetic acid, as the competing reagent, can easily adjust both the ligand substitution and dissociation processes. As a result, we successfully synthesized large single crystals of many Fe-MOFs, including PCN-250, with the [Fe₂M(μ_a -O)] cluster.

Discussion on synthetic conditions of PCN-250

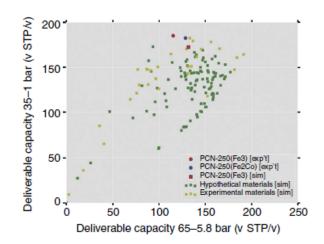
This novel synthetic approach could be regarded as a "dimensional augmentation" process. This means that pre-formed isolated clusters, or zero-dimensional nodes of [Fe₂M(μ_3 -O)], have been connected together to form three-dimensional nets of the MOF. Partial substitution on the [Fe₂M(μ_3 -O)] clusters has also happened when symmetry requirements or steric hindrance prohibits complete substitution.

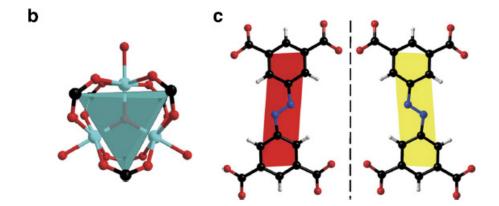
Based on our hypothesis, the substitution rate of the MOF formation process would be lower with extra acetic acid, which indicates the kinetic control. Gels or amorphous products were obtained when the amount of acetic acid was much less than the optimal value. If the concentration of acetic acid is much higher than the optimal value, no crystal or even solid would be generated after a long time. If MOF crystallization is considered to be an equilibrium and the formation of clear solution is regarded as the point of transition to a positive Gibbs free energy, then the concentration of acetic acid is actually an indicator of the MOF's ΔG of crystallization.

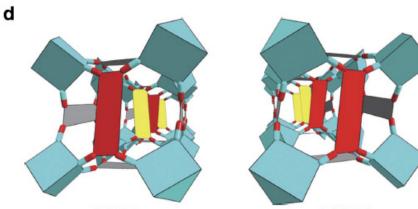
High volumetric gas uptake of PCN-250

High methane uptake of PCN-250 is a key feature of this material. It is highly related to the structure of the MOF used¹⁹. Computational studies give a good prediction of its methane uptake. Figure 2a shows the simulated deliverable capacities of PCN-250(Fe₃), PCN-250(Fe₂Co) and other predicted structures. Our computational simulations indicate that PCN-250 is potentially an outstanding absorbent for methane storage using a pressure range between 1 and 35 bar. Our simulations also prove that PCN-250 has the highest methane loading of all structures considered in this analysis at 35 bar.

PCN-250 is made of 6-connected [Fe₂M(μ_3 -O)] SBUs and a rectangular tetratopic ligand (Fig. 2b–d), which is isostructural to a reported indium MOF²¹. It is interesting that PCN-250', a MOF isomer of PCN-250, is formed in different solvothermal conditions. In PCN-250', the ligand has

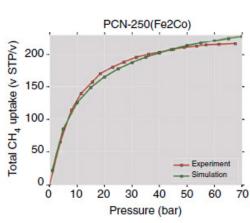

the same configuration in the one cube and mirror configuration in the adjacent cubes along any axis. The isothermal data shows that PCN-250(Fe₂Co) has total methane uptake of 200 v/v at 35 bar and 298 K (Fig. 2e), which is one of the highest methane uptake among all the reported MOFs. PCN-250(Fe₂Co) also possesses a record high H₂ uptake of 3.07 wt% and 28 g L⁻¹ at 1.2 bar and 77 K. In terms of hydrogen uptake, it also has one of the highest total volumetric H₂ uptakes, 60 g L⁻¹, at high pressure because of its high crystal density.

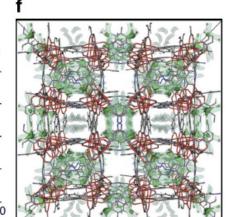

Both high uptake of methane and hydrogen results from the high valent open metal sites and suitable size of the pores in PCN-250 (Fig. 2f). As shown in Fig. 2b, the ligand covers the faces of every other cube in PCN-250 and highly charged open metal sites are around the channels between each cube. Thus, all of the inter space is available for gas adsorption. The interspace of PCN-250 has strong interaction with both H₂ and CH₄ molecules. Therefore, highly efficient space utilization for high volumetric gas uptake is achieved by inducing polarization of gas molecules via charge-induced dipole interaction. This high valence metal ion and induced dipole interaction is not limited within the first layer of gas molecules. Additional layers of gas molecules could be polarized, which would result in relatively insignificant adsorption enthalpy drop for multi-layer gas adsorption.

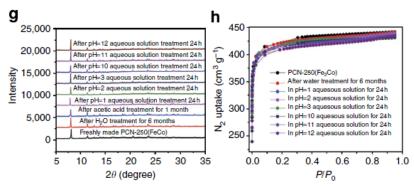

Extraordinary chemical stability of PCN-250

The PCN-250 series exhibits excellent chemical stability even after the replacement of the one iron atom to softer Lewis acid metal, M(II), in the μ_3 -oxo cluster. PCN-250(Fe₂Co) is intact in a range of pH values from 1 to 11 for 24 h. This is shown in the PXRD results that the peaks remained sharp with the treatment of glacial acetic acid and pH=1 to pH=11 aqueous solutions for 24 h (Fig. 2g, h). Under neutral condition, PCN-250(Fe₂Co) remained robust in H₂O after 6 months (Fig. 2g, h). Additionally, with almost no change in N₂ adsorption isotherms of PCN-250(Fe₂Co) after all these pH treatments, we can conclude that no MOF decomposition or phase transition happened. The rare combination of high gas uptake and chemical robustness gives PCN-250 a reusability of the sorbent for real world applications. With its extraordinary stability, high gas uptake, and excellent scalability, PCN-250 is a promising material for natural gas storage for a variety of applications.

а






PCN-250

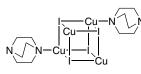
е

PCN-250'

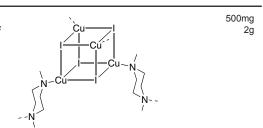
Figure 2: Simulated and experimental CH₄ adsorption of Fe-MOFs. (a) Performance plot of deliverable capacities using two different pressure swings. Shown are the predictions for the Fe-MOFs synthesized here (yellow) and in silico predicted structures (green). Red and blue points show PCN-250. (b–d) Structures of PCN-250 and PCN-250'. (e) Total CH₄ adsorption uptake of PCN-250 at 298 K and (f) contours of the computed potential energy surface of adsorbed CH₄ in PCN-250. (g) Powder X-ray patterns and (h) N₂ adsorption isotherms of PCN-250(Fe₂Co) after stability tests.

Conclusion

Highly stable metal–organic frameworks (MOFs) have been under investigation for a long period of time because of the interest in the material sustainability for real world applications. Nevertheless, synthesizing highly porous, chemically robust, and single crystalline MOFs has been extremely challenging. In this article, we report a novel robust porous Fe-MOF, PCN-250, prepared by kinetically tuned dimensional augmentation (KTDA) synthetic approach for the preparation of PCN-250. PCN-250(Fe₂Co) shows high volumetric uptake of H₂ and CH₄, and remains intact in water and aqueous solutions with a wide range of pH, which provides potential applications in gas storage for a variety of power systems and gas purification.


References

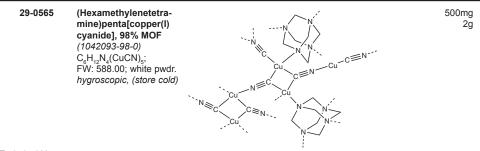
- Zhou, H.-C., Yaghi, O. M. & Long, J. R. Introduction to metal–organic frameworks. *Chem. Rev.* 112, 673–674 (2012).
- Fe'rey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).
- Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).
- Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO₂ capture. Science 319, 939–943 (2008).
- Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. *Angew. Chem. Int. Ed.* 43, 2334–2375 (2004).
- Herm, Z. R. et al. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340, 960–964 (2013).
- Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. Science 336, 1021–1023 (2012).
- Bloch, E. D. et al. Hydrocarbon separations in a metal-organic framework with open iron (II) coordination sites. Science 335, 1606–1610 (2012).
- 9. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. *Nat. Chem.* **2**, 944–948 (2010).
- Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).
- 11. Fe'rey, G. et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. *Angew. Chem. Int. Ed.* **43**, 6296–6301 (2004).
- Surble', S. et al. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. 3, 284–286 (2006).
- 13. Dincă, M. et al. Hydrogen storage in a microporous metal–organic framework with exposed Mn2t coordination sites. J. Am. Chem. Soc. **128**, 16876–16883 (2006).


- 14. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. *Chem. Rev.* **112**, 869–932 (2012).
- 15. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. *Chem. Rev.* **112**, 1196–1231 (2012).
- Tranchemontagne, D. J., Mendoza-Corte's, J. L., O'Keeffe, M. & Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. *Chem. Soc. Rev.* 38, 1257–1283 (2009).
- Li, L. et al. A synthetic route to ultratlight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nat. Commun. 4, 1774 (2013).
- Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. *Chem. Soc. Rev.* 38, 1294–1314 (2009).
- Makal, T. A., Li, J.-R., Lu, W. & Zhou, H.-C. Methane storage in advanced porous materials. *Chem. Soc. Rev.* 41, 7761–7779 (2012).
- Schoedel, A. & Zaworotko, M. J. [M3(μ3-O)(O2CR)6] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. *Chem. Sci.* 5, 1269–1282 (2014).
- Liu, Y. et al. Assembly of metal–organic frameworks (MOFs) based on indiumtrimer building blocks: a porous MOF with soc topology and high hydrogen storage. *Angew. Chem. Int. Ed.* 46, 3278–3283 (2007).

COPPER (Compounds)

- 29-3015 Bis(1,4-diazabicyclo [2.2.2] octane)tetra (copper(l) iodide) (Cul)₄(DABCO)₂ (928170-42-7) C₁₂H₂₄Cu₄I₄N₄; FW: 986.15; yellow pwdr. *air sensitive* Note: Ligand for MOF synthesis.
- 29-0550 Bis(N,N'-dimethylpiperazine) tetra[copper(I) iodide], 98% MOF (1401708-91-5) (Cul)₄(C₆H₁₄N₂)₂; FW: 990.18; white pwdr. moisture sensitive, (store cold)

500mg 2g



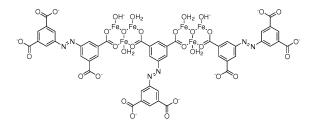
Technical Note:

1. The copper iodide, N,N'dimethylpiperazine complex is a 3D photoluminescent, fairly open network, with a lamda max excitation of 321 nm and a lamda max emission of 525nm.

References:

1. Dalton Trans., 2012, 41, 11663

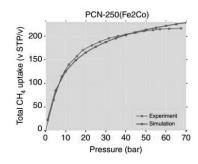
Technical Note:


1. The copper cyanide hexamethylenetetramine complex is a 3D photoluminescent, very densely-packed, network of tetradentate ligands with a lamda max excitation of 282 and 304 nm, and a lamda max emission of 417 and 522nm.

References:

- 1. Inorg. Chem., 2007, 46, 8897
- 2. Inorg. Chem., 2008, 47, 6931
- 3. Inorg. Chim. Acta., 2010, 364, 102
- Dalton Trans., 2012, 41, 11663

IRON (Co	mpounds)	
26-3725 New	Iron azobenzene tetracarboxylic, Porous [PCN-250(Fe)], CONEKTIC TM F250 (1771755-22-6) $C_{48}H_{20}N_6O_{32}Fe_3$; Dark red-brown pwdr. Note: Sold in collaboration with framergy for research purposes only. PCT/GB2014/053506	500mg 2g 10g


IRON (Compounds)

KRICT F100

Technical Note:

1. Metal-Organic Framework (MOF) exhibiting superior uptake of hydrogen and methane. Stable in water and aqueous solutions.

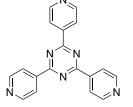
References:

- 1. Nat. Commun., 2014, 5, 5723
- 2. Sci. Technol. Adv. Mater., 2015, 16, 054202

26-2340 Iron(III) 1,3,5-benzenetricarboxylate hydrate, porous (F-free MIL-100(Fe), KRICT F100) [Iron trimesate] (1257379-83-1) [Fe₃O(H₂O)₂(OH){C₆H₃(COO)₃}₂]:XH₂O; red solid Note: Sold under agreement with KRICT for research and development purposes only Patents US 8507399 B2, US 8252950 B2.

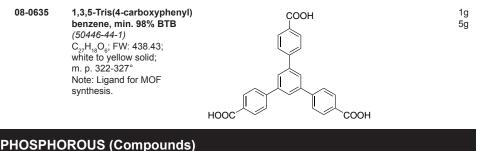
NITROGEN (Compounds)

07-0435	1,4-Di(4'-pyrazolyl)benzene, min. 97% H_BDP (1036248-62-0) $C_{12}H_{10}N_4$; FW: 210.24; pale yellow solid Note: Ligand for MOF synthesis.		500mg 2g
07-1942	1,4,7,10-Tetraazacyclododec- ane-N,N',N",N""-tetraacetic acid, min. 98% DOTA ($60239-18-1$) C ₁₆ H ₂₈ N ₄ O ₈ ; FW: 404.42; white pwdr. moisture sensitive, (store cold) Note: Ligand for MOF synthesis.	HOOCH ₂ C, CH ₂ COOH	250mg 1g 5g


Tech. Note (1) Ref. (1)

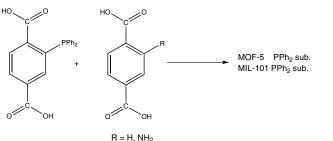
500ma

2g


NITROGEN (Compounds)

07-3235 2,4,6-(Tri-4-pyridinyl)-1,3,5-triazine, min. 97% TPT (42333-78-8) C₁₈H₁₂N₈; FW: 312.33; off-white pwdr. Note: Ligand for MOF synthesis.

OXYGEN	(Compounds)		
08-0175	[1,1'-Biphenyl]-4,4'-dicarboxylicacid, min. 98% (787-70-2) $C_{1_4}H_{10}O_4$; FW: 242.23;white to pale-yellow solidNote: Ligand for MOF synthesis.	ос{_}-соон	5g 25g
08-1220	2,5-Dihydroxyterephthalic acid, 98% H ₄ DOBDC (610-92-4) $C_6H_2(OH)_2(COOH)_2$; FW: 198.13; white pv	vdr. HO COOH	1g 5g 25g
08-1235	2,6-Naphthalenedicarboxylic acid, min . (<i>1141-38-4</i>) C ₁₀ H ₆ (COOH),; FW: 216.19; white pwdr.; m. p. >300° Note: Ligand for MOF synthesis.	. 98% COOH	5g 25g
08-1165	1,4-Phenylenediacetic acid, 97% (7325- $C_6H_4(CH_2COOH)_2$; FW: 194.18; white to o Note: Ligand for MOF synthesis.		1g 5g
08-3060	1,1,2,2-Tetra(4-carboxylphenyl) ethylene, 99% H₄TCPE (<i>1351279-73-6</i>) $C_{30}H_{20}O_{8}$; FW: 508.48; pale yellow pwdr. Note: Ligand for MOF synthesis.	ноос соон	25mg 100mg
08-0195	1,3,5-Tricarboxybenzene, min. 95% (Trimesic acid) BTC (<i>554-95-0</i>) $C_6H_3(COOH)_3$; FW: 210.14; white pwdr. Note: Ligand for MOF synthesis.	соон ноос соон	50g 250g


OXYGEN (Compounds)

15-7170 2-(Diphenylphosphino)terephthalic acid, 98% (1537175-69-1) COOH C₂₀H₁₈O₄P; FW: 350.30; white pwdr. Note: Ligand for MOF synthesis. Developed at the Paul Scherrer Institute, Switzerland PCT/ EP2013/051405. COOH

Technical Notes:

1. Starting material for the construction of diphenylphosphino-substituted MOFs.

Tech. Note (1) Ref. (1)

1g

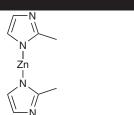
5g

50mg

250mg

References:

1. Ind. Eng. Chem. Res., 2014, 53, 9120.


ZINC (Compounds)

30-4015 HAZ

Zinc 2-methylimidazole MOF (ZIF-8) (59061-53-9) C₈H₁₀N₄Zn; FW: 227.58; white solid

Technical Notes:

- 1. Use of ZIF-8 in the separation of alkanes, alkenes and aromatics
 - a. Separation of xylene isomers Micropor. Mesopor. Mat., 2013, 173, 1.
 - b. Separation of C6 Paraffins Ind. Eng. Chem. Res., 2012, 51, 4692.
 - c. Effective separation of propylene/propane binary mixtures J. Membrane Sci., 2012, 390-391, 93.
- 2. Use of ZIF-8 as a catalyst and catalyst-suppo
 - a. Catalytic activity of ZIF-8 in the synthesis of styrene carbonate *Chem. Commun.*, **2013**, 32, 36.
 - b. Iridium nanoparticles stabilized by metal organic frameworks: synthesis, structural properties and catalytic performance
 - Dalton Trans., 2012, 41, 12690.
 - c. Zeolitic imidazole frameworks: Catalysts in the conversion of carbon dioxide to chloropropene carbonate ACS Catalysis, **2012**, *2*, 180.
 - d. Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction ACS Catalysis, 2011, 1, 120.

ZINC (Compounds)

- 3. Use of ZIF-8 in gas purification
 - a. MOF-containing mixed-matrix membranes for CO₂/CH₄ and CO₂/N₂ binary gas mixture separations *Sep. Purif. Technol.*, **2011**, *81*, 31.
 - b. Porous polyethersulfone-supported Zeolitic Imidazolate Framework Membranes for hydrogen separation *J. Phys.Chem. C.*, **2012**, *116*, 13264.

ZIRCONIUM (Compounds)

40-1105 Zirconium 1,4-dicarboxybenzene MOF (UiO-66) (1072413-80-9) $C_{48}H_{24}O_{32}Zr_6$; white pwdr.; SA: > 1100m²/g Note: Sold under license from Inven2 AS for research purposes only. EP 09738396 and US 12/989,641.

500mg 2g

Technical Note:

 Zirconium 1,4-dicarboxybenzene (UiO-66) is a versatile MOF that exhibits a number of favorable properties such as high surface area (ref. 1), high porosity and shear stability (ref. 2) and thermal stability (ref. 3).

References:

- 1. J. Am. Chem. Soc., 2008, 139, 13850.
- 2. J. Phys. Chem. Lett., 2013, 4(6), 925.
- 3. Chemistry An Asian Journal 2011, 6(12), 3270.

Heterogenized Molecular Iridium Complexes for Catalytic Water Oxidation and C-H Activation Stafford W. Sheehan^a and Ulrich Hintermair^b

^aCatalytic Innovations LLC, 70 Crandall Road, PO Box 356, Adamsville, Rhode Island 02801, United States ^bCentre for Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, United Kingdom staff@catalytic-innovation.com; u.hintermair@bath.ac.uk

Introduction

Electrochemical oxidation reactions form the basis of many raw material streams in the chemical industry. Examples include the chlor-alkali process, non-ferrous metal purification, water electrolysis, electroplating, wastewater treatment, and many others.¹ These processes are generally performed in very harsh conditions as required for high throughput. In many cases, they incorporate highly acidic electrolytes, current densities on the order of amperes per square centimeter of anode geometric surface area, and high applied (over)potentials. These conditions pose fundamental challenges on the materials used in these processes in terms of stability and lifetime. Due to their privileged intrinsic electronic properties, iridium metal and iridium oxides have emerged as state-of-the-art catalytic and corrosion-resistant coating materials for anodes in these applications.² Widespread use of this rare and critical metal is due to its ability to withstand these harsh conditions without corroding, as well as low overpotential and high selectivity in a number of useful oxidation reactions, including water oxidation and chlorine production, on iridium-based anode surfaces.³⁻⁶

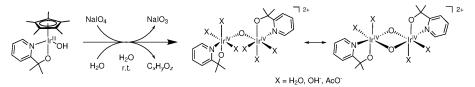
While heterogeneous catalysts consisting of thin films or nanoparticles of iridium oxide on conductive support materials are ubiquitous in the electrochemical industry, the study and application of molecular analogues of these materials is still developing.⁷⁻¹² In particular, the last decade has seen the emergence of iridium-based homogeneous complexes for water oxidation as a field of intense research due to its relevance to the generation of renewable fuels in artificial photosynthetic schemes.¹³⁻¹⁵ Of these iridium-based compounds, organometallic complexes bearing carbonyl (CO), cyclooctadiene (cod), cyclopentadienyl (Cp), or pentamethylcyclopentadienyl (Cp*) ligands in particular have been investigated, mainly due to their synthetic accessibility.^{16,17}

These organometallic complexes were initially believed to catalyze water oxidation directly due to high observed current densities in electrochemical oxidation experiments.¹⁸ However, a number of studies later showed that loss of the organic ligand in Cp*Ir-based complexes occurred before the onset of oxygen evolution when driving water oxidation with chemical oxidants.^{16,19-21} The high positive current flows observed in linear sweep or cyclic voltammograms, therefore, may be related to incipient oxidation of the Cp* ligand, with concomitant oxidative activation of the Cp*Ir-based precursor complex to form an activated species.²² In most cases, these complexes fully degrade and polymerize into amorphous IrO_x-based materials as the true catalytic species.^{23,24}

Yet, in the case that the precatalyst complex possesses a bidentate chelate ligand with high oxidative stability and electron donicity, degradation into IrO_x may be prevented and the oxidative transformation stopped at an intermediate molecular species.¹⁹ In these cases, the chelate ligand allows oxidative removal of the sacrificial organic placeholder ligand and generation of $Ir(IV) \mu$ -oxo dimers reminiscent of IrO_x subunits, but remains bound to the Ir center to prevent polymerization and fine-tune the electronics of the active Ir site. The presence of IrO_x -type functionalities in these molecular systems give rise to similar spectroscopic features, such as an intense blue color, which initially made distinction of these molecular systems from IrO_x colloids difficult.²³ When precursor oxidation proceeds in the molecular regime by the correct choice of ligands and concentration, these activated iridium complexes are cationic and further stabilized

by the anions in solution, both additive and generated from the oxidation of the organic ligand. In particular, when stabilized by iodate (IO_3^-) , these complexes were found to spontaneously and irreversibly graft to the surface of metal oxide and carbon-based electrodes by the formation of a new chemical to the iridium center, forming a heterogenized molecular catalyst that retains the oxidation-resistant bidentate ligand.²⁵

This family of heterogenized molecular catalysts is particularly promising for industrial application as they possess the tunability, activity, and atom-economic use of homogeneous catalysts, but may be used in processes requiring macroscopically heterogeneous oxide electrodes.²⁶ Rather than anchoring through an organic ligand with inherent oxidative susceptibility, these materials use a direct-binding motif with a metal-oxo bond from the iridium center to the scaffold. This imparts the stability of heterogeneous oxides on the anchored species, yet allows for tunability of the catalytic properties of the molecule by controlling the remaining ligands. In this scenario, the surface now acts as a ligand and influences the energetics of the surface species itself; therefore, the surface must be carefully matched with the catalyst to obtain high activity. However, for practical and industrial applications, the ease of preparation, economic use of the precious metal, and stability of the catalyst are of utmost importance.


In the following we describe the properties and use of the surface-bound molecular catalyst in this family that possesses the highest activity and stability in applications where iridium or iridium oxide is typically employed. Specifically, we highlight applications as anode catalysts for water electrolysis and corrosion resistant coatings in metal purification and refining processes. We also briefly cover further applications that are improved by the molecular nature of this catalyst, namely the specialty chemicals, as well as for advanced oxidation processes in wastewater treatment.

Synthesis and Molecular Properties

When the organic placeholder ligand on an iridium-based molecular complex is removed by either electrochemical potential or chemical oxidant, a concentration-dependent mixture of molecular species is formed. While likely monomeric in early stages of the reaction, spectroscopic analyses have pointed to even-numbered oligomeric Ir(IV) compounds containing bridging oxo ligands, terminal aqua sites and one chelate ligand per metal as the resting state after full activation. These compounds are further stabilized by counter-anions in solution and exist as multiple isomers, but are molecular in nature as long as the bidentate chelate ligand is appropriately coordinating and oxidation-resistant and the iridium concentration low enough to prevent precipitation of amorphous particles. This dynamic feature has unfortunately prevented the isolation and crystallization of these species so far,^{17,19} but extensive homogeneity tests, including time-resolved dynamic light scattering (DLS), electrochemical quartz crystal nanobalance (ECQN), electron microscopy, and kinetic analyses have confirmed the absence of heterogeneous particles under appropriate conditions.²⁷

Over the course of multiple studies we found a ligand with high resistance to oxidation that promotes metal-centered oxidation and stabilization of the Ir(IV) oxidation state: a tertiary pyridyl alcohol, 2-(pyridine-2-yl)propan-2-ol (pyalc). The tertiary alkoxide is a strong electron donor which allows the stabilization of high valent states, while the benzylic carbon is protected by two methyl groups to prevent oxidative degradation.²⁸ Complexes synthesized with this ligand were found to have the greatest stability and activity when bound to metal oxide surfaces, therefore, our work incorporates this ligand on our iridium-based catalysts in most cases.

The formation of the activated iridium species from these precatalysts is depicted below in Scheme 1, for the case of a Cp*Ir(pyalc)OH precatalyst oxidized by an excess of NalO₄ in aqueous solution. As mentioned above, the resulting cationic species is stabilized by acetate and iodate counter-anions in solution.

Scheme 1. Oxidation of a Cp*Ir(pyalc)OH precatalyst to form Ir(IV) dimers in solution. CxHyOz represents the mixture of organic species, predominantly acetate, that result from the oxidative degradation of the Cp*. These organic species exchange with water coordinated to the Ir(IV) centers.

While the exact mechanism of amorphous particle formation and how it relates to the ligands present has yet to be determined, the high sensitivity of this system to solution concentration of both iridium and organic anions requires consistency in experimental protocols. Table 1, below, shows the approximate critical concentration of iridium with precatalysts bearing ligands with varied oxidative susceptibility.²⁹ The critical concentration is defined as the concentration at which amorphous iridium-containing particles are formed by oxidative degradation of the molecular species present in solution. Their formation is consistent with the precipitation of an iridium-containing coordination polymer, and further experimental work is currently underway to analyze these solids.

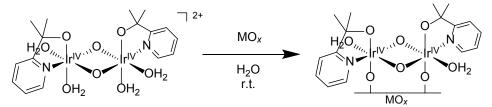
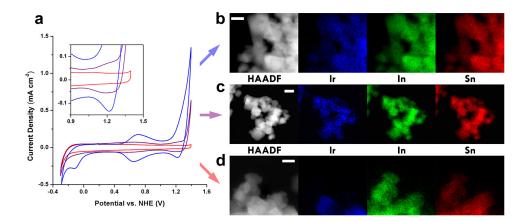

Precursor Compound	Oxidant	Approximate Iridium Critical Concentration	
Cp*Ir(pyalc)OH	400 mM NaIO4	18 mM	
$[Cp*Ir(bisimidazole)OH]BF_4$	400 mM NaIO4	16 mM	
[Cp*Ir(2,2'-bipyridyl)OH]BF ₄	300 mM NaIO4	13 mM	
Cp*Ir(phenylpyridine)OH	200 mM NaIO4	9 mM	
[Cp*Ir(H ₂ O) ₃]SO ₄	100 mM NaIO4	0.7 mM	

 Table 1. Approximate critical concentrations at which heterogeneous amorphous particles are formed in aqueous solution for Cp*lr-based precatalysts containing ligands of varied oxidative susceptibility.

Particle formation is important to consider in practical applications of these materials, since solutions prepared at concentrations above or near their critical concentration exhibit diminished surface-binding activity due to the decrease of available molecular complexes as iridium atoms are progressively sequestered into the precipitating solids.³⁰

Surface-binding onto conductive electrode surfaces

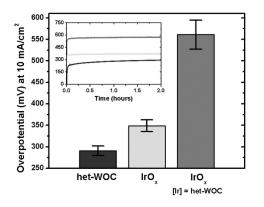

Surface-binding of the activated iridium species likely occurs by a water-elimination mechanism as a blue shift of 20-30 nm is observed in the UV-vis upon binding, similar to the 15 nm shift observed when the bound aqua ligands are deprotonated to hydroxyls in solution. Although no iodine-containing species are left on the surface of the electrode after binding and washing with water, when no iodate is present surface binding activity is markedly decreased. If pH and iodate concentration are both adjusted correctly (in addition to suitable activation conditions that prevent particle formation), rapid and irreversible surface-binding occurs on a variety of oxidic surfaces at room temperature for which no applied potential, light, or heat-driven process is required.

Scheme 2. Binding mode and proposed surface structure for [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer species at 1 mM solution concentration in 0.1 M aqueous $NalO_3$. MO_x represents a hydrated metal oxide surface.

In addition to the practical ease of surface-functionalization, this method has the advantage of affording a molecular monolayer on the electrode surface as binding of the activated dimer is self-limiting. This leaves the surface decorated with a uniform, minimally thin film of a highly active catalyst material sitting right at the interface of current collector and electrolyte. This promises highly effective use in electrocatalytic applications as well as corrosion protection.

Confirmation that the [2-(pyridine-2-yl)-2-propanato]iridium dimer binds to scaffold material as a monolayer comes from electrochemical, spectroscopic, and electron microscopic measurements. Furthermore, thermal removal of the organic ligand and destruction of the conformal surface coating can be followed by electron microscopy and electrochemistry (Figure 1). When heated to 500°C in an air atmosphere, the ligand is burned off and an amorphous iridium oxide layer is formed. While less active for water oxidation than the molecular species, as evident from the cyclic voltammograms, this is still a low-cost and effective way to deposit ultra-thin iridium oxide layers. Further heating to 700 °C induces clustering and crystallization rutile IrO₂ particles with much lower electrocatalytic activity.

Figure 1. Comparison of iridium-based catalysts on mesoporous ITO films. a) CVs taken at 10 mV/s scan rate at pH 2.6 of a catalyst-coated ITO electrode corresponding to elemental maps taken in a transmission electron microscope on the right. b) An as-deposited monolayer of the [2-(pyridine-2-yl)-2-propanato]iridium dimer. c) The monolayer heated to 500°C, showing that the coating of iridium remains conformal. d) Heated to 700°C, showing aggregation of the surface species and nanoparticle formation. Scale bars are all 20 nm. Figure reproduced from reference 25, where it is presented in color.


Water Oxidation and Corrosion Resistance

As the electrochemistry of the activated complex in solution suggested, when bound to the surface of conductive electrode materials the [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer is a highly active and reversible electrocatalyst for water oxidation, also known as the oxygen evolution reaction (OER) in the forward direction, and oxygen reduction reaction (ORR) in the reverse, shown below.

$$2H_2O \Rightarrow O_2 + 4H^+ + 4e^ E^0 = 1.23 \text{ V vs. RHE (1)}$$

With our much overdue move towards low-carbon power from tidal, wind and solar sources, means of concentrating and storing these intermittent electricity supplies will become crucial for tomorrow's economy. Water electrolysis is the most benign, practical and feasible method of doing this by generating clean H₂ as sustainable chemical energy carrier for a variety of applications, including fuel production and chemical synthesis.³¹ While the overpotential for the cathodic proton reduction reaction generating hydrogen is generally low on the surface of an appropriate catalyst material, such as platinum, the energetic bottleneck of water electrolysis is the relatively high overpotential for water oxidation on the anode surface due to it being a four electron process that is kinetically challenging.

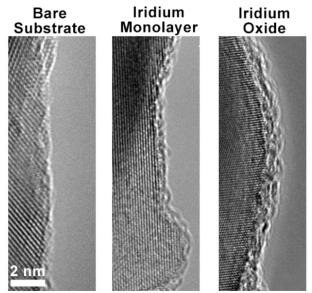
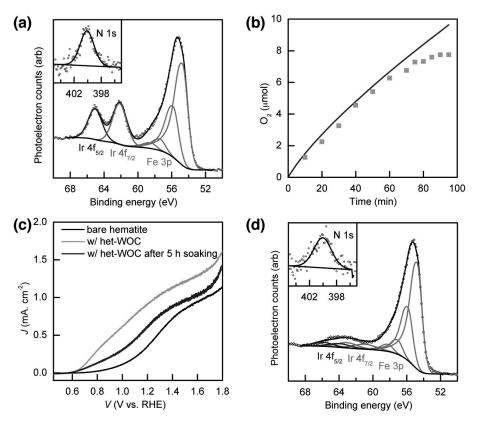

Current state-of-the-art materials for water electrolysis are termed "dimensionally stable anodes" (DSAs) based on iridium oxide using titanium supports, which despite showing high activity and stability have the aforementioned drawback of scarcity and high cost. To retain the high activity of iridium oxide as the key component, yet use far less iridium, we can employ the surface-bound [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer also known as the "het-WOC". A monolayer of this iridium dimer species possesses Faradaic efficiency and OER overpotential comparable to iridium oxide, with an electroactivity much higher (Figure 2). Full utilization of the highly active and scarce metal is, thus, possible with this material and allows for higher activity than iridium oxide, especially when considered on a per-iridium atom basis.³²

Figure 2. Comparison of the OER overpotential between the [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer "het-WOC" on a mesoporous conductive oxide scaffold (left bar) with iridium oxide possessing the same amount of iridium as the monolayer (right bar). Even when compared to IrO_x under optimized conditions containing orders of magnitude more iridium than the monolayer (middle bar), the het-WOC species possesses comparable overpotential. Inset shows raw chronopotentiometry data for each sample time at a 10 mA/cm² current density. Figure reproduced from reference 25.

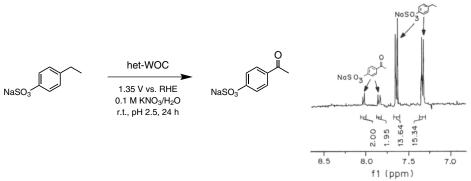

While this catalytic monolayer is very attractive for application in high performance PEM electrolyzers,³³ it has also been shown to act as an effective water oxidation catalyst and corrosion-resistant layer in photoelectrochemical cells for research towards integrated devices for artificial photosynthesis.³⁴ As mentioned above, the only OER catalysts that are stable in acidic systems are iridium-based, which includes the [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer. Acidic systems are, furthermore, important to water electrolysis due to the high effectiveness and stability of polymeric proton exchange membranes in acids. In solar-driven water electrolysis schemes, hematite is an attractive photoanode candidate material for tandem cells due to its abundance, suitable 2.0 - 2.2 eV band gap and good visible light absorption characteristics.³⁵ One major drawback of hematite is its instability in acids; hematite is readily etched below pH 4 and could thus so far only be used in alkaline cells where proton reduction is sluggish and membrane stability low.

In a recent study, the [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer monolayer was successfully applied to a hematite photoanode and compared to iridium oxide, as shown in the transmission electron microscope (TEM) images below.

Figure 3. TEM images of a bare iron oxide scaffold (left) next to the same material coated with the [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer (middle). We can see in comparison to an ultrathin layer of iridium oxide (right) that the bulk material is thicker and more dense than a monolayer affords. Figure reproduced from reference 34.

It was found that the het-WOC monolayer not only acted as an effective barrier layer, preventing the underlying hematite from being etched, but also shifted the onset potential of hematite for water oxidation cathodically by 250 mV when under light illumination. 100% Faradaic yield for oxygen evolution was measured, with little decrease in activity for over 80 minutes. X-ray photoelectron spectroscopy (XPS) was used to monitor the binding of the iridium dimer species (Figure 4). While the monolayer was eventually removed by progressive etching of the underlying hematite, plausibly through acid attack at pin-hole sites, the [2-(pyridine-2-yl)-2-propanato]iridium dimer still enabled the use of iron oxide at pH 1 four times over the scale of hours. Importantly, the self-binding monolayer formation is applicable to nanostructured surfaces and does not interfere with light absorption itself, providing great promise for future use in improved photoelectrochemical cells.

Figure 4. Surface studies of the het-WOC decorated hematite photoelectrode. a) XPS analysis confirming the attachment of Ir and the bidentate pyalc ligand. b) Dotted lines: oxygen detected from a het-WOC decorated hematite photoelectrode in pH 1.01, 0.1 M KNO3 electrolyte under 100 mW/cm², AM 1.5 illumination, with an applied potential of 1.23 V vs RHE. Solid line: theoretical O_2 evolved for 100% Faradaic efficiency based on charge passed through the electrode. c) Linear sweep voltammetry for photoelectrodes under the same lighting and electrolyte conditions as in (b). d) XPS spectrum after a 10 hour stability test, showing loss of Ir due to etching of underlying hematite. Figure reproduced from reference 34.


While water electrolysis for hydrogen generation is the most well-known industrial application of oxygen evolution catalysts, it is far from the most widespread. Electrorefining, or the electrochemical purification of metals by reducing them at a cathode with an anode reaction to provide the necessary charge balance, outputs tons of oxygen into the atmosphere and is used in a variety of sectors around the globe.³⁶ The materials used for anodes in some of these processes, such as zinc electrowinning, are frequently made of lead due to the high current densities achievable on a lead surface and its resistance to corrosion by strong acids.³⁷

Additives are used in solution that, among other properties, prevent corrosion of the lead anode.³⁸ In many cases, it is speculated that these additives act as a water oxidation catalyst on the lead surface thus preventing the dissolution of high-valent lead ions. The [2-(pyridine-2-yl)-2-propanato]iridium(IV) dimer acts similarly on the surface of lead anodes, and is used commercially in this application. In general, the iridium dimer's high activity for oxygen evolution prevents the formation of high-valent metal species in any underlying scaffold material, therefore inhibiting redox-based corrosion. This effect is pronounced when used with a high surface-area

scaffold to increase the amount of iridium accessible to the electrolyte solution. Toward that end, we have developed antimony-doped tin oxide scaffolds at 20 nm, 50 nm, and 100 nm particle sizes for use in electrochemical applications. These materials can be used without any post-processing in catalytic inks for membrane electrode assemblies. They also readily sinter together at 500 °C to form a highly conductive and acid-stable scaffold for electrolyzers, PEM fuel cells, electrowinning in acidic conditions, and wastewater treatment.

Selective C-H Oxidation

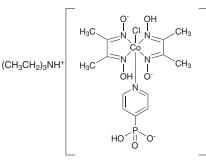
While the greatest value that this material brings for water oxidation and corrosion resistance is a reduction in the utilization of iridium, its capacity to selectively oxidize C-H bonds as a heterogeneous electrocatalyst is equally interesting. Current industrial applications developed include oxidation of organic contaminants in aqueous wastewater, such as lactic acid, to CO_2 for the removal of the aqueous contaminant and re-use of the CO_2 .³⁹ Beyond this use, this molecular material further enables the selective oxidation of organic compounds for the electrosynthesis of specialty chemicals. An example, shown below, depicts the selective electro-oxidation of ethylbenzene-sulfonate (EBS) to the corresponding sulfonated acetophenone (APS) in aqueous solution using a conductive oxide anode decorated with the iridium dimer catalyst.

Figure 5. Left: reaction scheme for the electrochemical oxidation of EBS to APS by the surface-bound iridium dimer on a mesoporous ITO anode. Right: ¹H NMR spectrum after the reaction showing successful synthesis of the product. A TOF of approximately 32 s⁻¹ for conversion to APS was measured. Figure reproduced from reference 40.

Further transformations, such as the oxidation of butanol to butyric acid, and tetrahydrofuran to butyrolactone, have also been successfully demonstrated at the proof-of-concept level. Previously, the longevity of the catalyst was limited by the stability of the mesoporous ITO scaffold.⁴¹With the antimony-doped tin oxide catalyst scaffolds developed at Catalytic Innovations that possess higher conductivity and stability, selective C-H oxidation in electrochemical cells is now enabled in continuous-flow processes at turnover numbers exceeding 10⁸ in practical synthetic applications.

Conclusions

Industrial use of these surface-bound iridium complexes demonstrates that molecular catalysts may possess the stability required for long-term, practical applications under appropriate conditions. Their stability is dependent on the substrate that they are adhered to as well as the ligands present on the heterogenized species. Of these, 2-(pyridine-2-yl)propan-2-ol has emerged as a highly versatile, oxidation-resistant chelate ligand applicable to this and other catalytic systems that require the stabilization of highly oxidized metal centers. The iridium-based het-WOC briefly described here offers possibilities for increasing the economy of existing industrial processes by reducing the amount of iridium required, opening up new applications for corrosion-sensitive materials by increasing their lifetime, and new processes due to the improved selectivity of these molecular species for C-H bonds.


References

- Renner, H.; Schlamp, G.; Kleinwachter, I.; Drost, E.; Luschow, H. M.; Twes, P.; Panster, P.; Diehl, M.; Lang, J.; Kreuzer, T.; Knodler, A.; Starz, K. A.; Dermann, K.; Rothaut, J.; Drieselmann, R.; Peter, C.; Schiele, R. "Platinum Group Metals and Compounds", *Ullmann's Encyclopedia of Industrial Chemistry*; Wiley: 2001.
- 2. Trasatti, S. Electrochim. Acta 1984, 29, 1503.
- 3. Zerbino, J. O.; Arvia, A. J. J. Electrochem. Soc. 1979, 126, 93.
- 4. Beni, G.; Schiavone, L. M.; Shay, J. L.; Dautremontsmith, W. C.; Schneider, B. S. Nature 1979, 282, 281.
- 5. Ouattara, L.; Fierro, S.; Frey, O.; Koudelka, M.; Comninellis, C. J. Appl. Electrochem. 2009, 39, 1361.
- Nong, H. N.; Oh, H. S.; Reier, T.; Willinger, E.; Willinger, M. G.; Petkov, V.; Teschner, D.; Strasser, P. Angew. Chem. Int. Ed. 2015, 127, 1.
- Sanchez-Casalongue, H. G.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. Angew. Chem. Int. Ed. 2014, 53, 7169.
- Minguzzi, A.; Lugaresi, O.; Achilli, E.; Locatelli, C.; Vertova, A.; Ghigna, P.; Rondinini, S. Chem. Sci. 2014, 5, 3591.
- 9. Venturini, A.; Barbieri, A.; Reek, J. N. H.; Hetterscheid, D. G. H. Chem. Eur. J. 2014, 20, 5358.
- Savini, A.; Bucci, A.; Bellachioma, G.; Giancola, S.; Palomba, F.; Rossi, A.; Suriani, M.; Zuccaccia, C.; Macchioni, A. J. Organomet. Chem. 2014, 771, 24.
- 11. Cao, R.; Ma, H.; Geletii, Y. V.; Hardcastle, K. I.; Hill, C. L. Inorg. Chem. 2009, 48, 5596.
- Lalrempuia, R.; McDaniel, N. D.; Muller-Bunz, H.; Bernhard, S.; Albrecht, M. Angew. Chem. Int. Ed. 2010, 49, 9765.
- 13. Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729.
- 14. McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S. J. Am. Chem. Soc. 2008, 130, 210.
- 15. Concepcion, J. J.; Binstead, R. A.; Alibabaei, L.; Meyer, T. J. Inorg. Chem. 2013, 52, 10744.
- 16. Savini, A.; Belanzoni, P.; Bellachioma, G.; Zuccaccia, C.; Zuccaccia, D.; Macchioni, A. *Green Chem.* 2011, 13, 3360.
- 17. Huang, D. L.; Beltran-Suito, R.; Thomsen, J. M.; Hashmi, S. M.; Materna, K. L.; Sheehan, S. W.; Mercado, B. Q.; Brudvig, G. W.; Crabtree, R. H. *Inorg. Chem.* **2016**, *55*, 2427.
- Blakemore, J. D.; Schley, N. D.; Balcells, D.; Hull, J. F.; Olack, G. W.; Incarvito, C. D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2010, 132, 16017.
- Hintermair, U.; Sheehan, S. W.; Parent, A. R.; Ess, D. H.; Richens, D. T.; Vaccaro, P. H.; Brudvig, G. W.; Crabtree, R. H. *J. Am. Chem. Soc.* **2013**, *135*, 10837.
- 20. Wang, C.; Wang, J. L.; Lin, W. B. J. Am. Chem. Soc. 2012, 134, 19895.
- Ingram, A. J.; Wolk, A. B.; Flender, C.; Zhang, J. L.; Johnson, C. J.; Hintermair, U.; Crabtree, R. H.; Johnson, M. A.; Zare, R. N. *Inorg. Chem.* 2014, *53*, 423.
- Thomsen, J. M.; Sheehan, S. W.; Hashmi, S. M.; Campos, J.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc. 2014, 136, 13826.
- 23. Hintermair, U.; Hashmi, S. M.; Elimelech, M.; Crabtree, R. H. J. Am. Chem. Soc. 2012, 134, 9785.
- Blakemore, J. D.; Schley, N. D.; Olack, G. W.; Incarvito, C. D.; Brudvig, G. W.; Crabtree, R. H. Chem. Sci. 2011, 2, 94.
- Sheehan, S. W.; Thomsen, J. M.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W.; Schmuttenmaer, C. A. Nat. Commun. 2015, 6, 6469.
- 26. Coperet, C.; Chabanas, M.; Saint-Arroman, R. P.; Basset, J. M. Angew. Chem. Int. Ed. 2003, 42, 156.
- Schley, N. D.; Blakemore, J. D.; Subbaiyan, N. K.; Incarvito, C. D.; D'Souza, F.; Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc. 2011, 133, 10473.
- Shopov, D. Y.; Rudshteyn, B.; Campos, J.; Batista, V. S.; Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc. 2015, 137, 7243.
- Lewandowska-Andralojc, A.; Polyansky, D. E.; Wang, C. H.; Wang, W. H.; Himeda, Y.; Fujita, E. Phys. Chem. Chem. Phys. 2014, 16, 11976.
- 30. Rose, D.; Lever, F. M.; Powell, A. R.; Wilkinson, G. J. Chem. Soc. A 1969, 1969, 1690.
- 31. Olah, G. A.; Prakash, G. K. S.; Goeppert, A. J. Am. Chem. Soc. 2011, 133, 12881.
- 32. McCrory, C. C. L.; Jung, S. H.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135, 16977.
- 33. Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. Int. J. Hydrogen Energy 2013, 38, 4901.
- 34. Li, W.; Sheehan, S. W.; He, D.; He, Y.; Yao, X.; Grimm, R. L.; Brudvig, G. W.; Wang, D. Angew. Chem. Int. Ed. 2015, 54, 11428.
- 35. Tilley, S. D.; Cornuz, M.; Sivula, K.; Gratzel, M. Angew. Chem. Int. Ed. 2010, 122, 6549.
- 36. Tunnicliffe, M.; Mohammadi, F.; Alfantazi, A. J. Electrochem. Soc. 2012, 159, C170.
- 37. McGinnity, J. J.; Nicol, M. J. Hydrometallurgy 2014, 144-145, 133.
- 38. Newnham, R. H. J. Appl. Electrochem. 1992, 22, 116.
- 39. Sheehan, S. W. Electrochemical Processing of Liquid Acid Whey. U.S. Patent Application. No. 62/236,305.
- Sheehan, S. W.; Hintermair, U.; Thomsen, J. M.; Brudvig, G. W.; Crabtree, R. H. Iridium Complexes for Electrocatalysis. US Pat. Appl. Publ. (2015), US 20150021194 A1 20150122.
- 41. Scholten, M.; Vandenmeerakker, J. E. A. M. J. Electrochem. Soc. 1993, 140, 471.

COBALT (Compounds)

27-3015 NEW

Triethylammonium {chlorobis(dimethylglyoximato)(4-hydrogenphosphonatepyridinyl) cobaltate(III)} (1280199-86-1) C₁₀H₂₂CICoN₂O₂P; FW: 584.88; light-brown solid

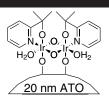
Technical Notes:

- Synthetic cobaloxime catalyst for reduction of aqueous protons to hydrogen in the presence of atmospheric oxygen.
- Catalyst containing phosphonate anchor groups for immobilization on metal oxide semiconductor surfaces, enabling light-driven hydrogen evolution.

References:

- 1. Angew. Chem. Int. Ed., 2012, 51, 9381
- 2. Angew. Chem. Int. Ed., 2012, 51, 12749
- 3. Chem. Commun., 2011, 47, 1695
- 4. Chem. Sci., 2015, 6, 2727
- 27-0477
 Cobalt-dppe heterogeneous water oxidation catalyst (~17% Co)
 100mg

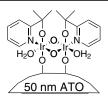
 New
 Co₄(dppe)₂(CO)(OH)₉(H₂O)₉; FW: C₂₆H₂₄CoP₂; light-brown pwdr.
 500mg


 Note: Sold under license from Catalytic Innovations, LLC for research purposes only. US Patent Publication No. US20150065339 A1.
 500mg

IRIDIUM (Compounds)

77-0030 NEW

core/shell nanopowder, 20 nm (conductive and acid-stable)blue pwdr. Note: Sold under license from Catalytic Innovations, LLC for research purposes only. US Patent Publication No. US20150021194 A1.


Antimony Tin Oxide/Iridium Het-WOC

Technical Notes:

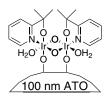
ATO Composition: 90% SnO₂, 10% Sb₂O₃ (w/w) BET Surface Area: 50-60 m²/g Resistivity: $0.3 - 0.7 \Omega$ •cm

77-0035 New	Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder, 50 nm (conductive and acid-stable)blue pwdr. Note: Sold under license from Catalytic Innovations, LLC for research purposes only.
	US Patent Publication No. US20150021194 A1.

250mg 1g

250mg

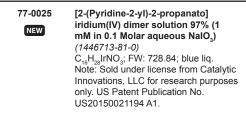
1g

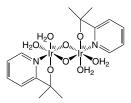

Technical Notes:

ATO Composition: 90% SnO₂, 10% Sb₂O₃ (w/w) BET Surface Area: 40-50 m²/g Resistivity: $0.05 - 0.08 \Omega$ •cm

IRIDIUM (Compounds)

77-0040 Antimo NEW core/sl (condu

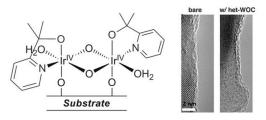

Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder, 100 nm (conductive and acid-stable)blue pwdr. Note: Sold under license from Catalytic Innovations, LLC for research purposes only. US Patent Publication No. US20150021194 A1.



250mg 1g

Technical Notes:

ATO Composition: 90% SnO₂, 10% Sb₂O₃ (w/w) BET Surface Area: 5-10 m²/g Resistivity: 0.05 – 0.08 Ω cm


10ml 50ml

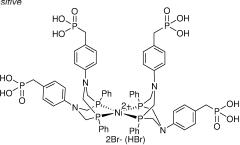
Technical Notes: Standard Operating Procedure

Heterogenization of the material is straightforward and can be performed in air, at ambient temperature, with no additives, applied potential or other treatment required. For most carbon-based or metal oxide substrates:

- 1. Dip substrate in het-WOC deposition solution (or disperse powders, if powder).
- 2. Wait 4-12 hours (typically overnight).
- 3. Remove substrate from solution (or filter out powder) and rinse with clean water.

This will cause the monolayer Ir material to be deposited on the substrate, with a surface structure as shown¹ (TEM image on iron oxide shown to the right):

The het-WOC deposition solution may be diluted, in order to increase its coverage over large substrates. As stated in the SDS, the het-WOC deposition solution it is mostly comprised of water, therefore dilution with water is best. It can also be re-used repeatedly to load multiple substrates with the Ir monolayer – each loading only uses a small amount of the Ir present in solution, depending on surface area of substrate.


References:

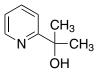
- 1. J. Am. Chem. Soc., 2013, 135, 10837.
- 2. J. Am. Chem. Soc., 2014, 136, 13826.
- Nat. Commun., 2015, 6, 6469.
- 4. Angew. Chem. Int. Ed., **2015**, 54, 11428.
- 5. Energy Environ. Sci., 2016, 9, 1794.

NICKEL (Compounds)

28-1720 NEW Bis{P,P'-1,5-diphenyl-3,7-bis[(4-hydrogenphosphonate) phenyl]-1,5,3,7-diazadiphosphocine} nickel(II) bromide (hydrogen bromide adduct) (1514896-39-9) $C_{_{00}}H_{_{00}}Br_{_{3}}N_{_{4}}NiO_{_{12}}P_{_{0}}$; FW: 1584.41; red-brown xtls. *air sensitive, moisture sensitive*

5mg 25mg

Technical Notes:


- 1. Synthetic nickel catalyst used for photocatalytic reduction of aqueous protons to hydrogen.
- 2. Catalyst containing phosphonate anchor groups for immobilation on metal oxide semiconductor surfaces, enabling light-driven hydrogen evolution.

References:

- 1. Angew. Chem. Int. Ed., 2014, 53, 11538
- 2. J. Amer. Chem. Soc., 2014, 136, 356

NITROGEN (Compounds)

07-3333 NEW **2-(Pyridine-2-yl)propan-2-ol, min. 95% pyalc** (37988-38-8) (C₈H,N)C(CH₂)₂(OH); FW: 137.18; white xtl.

100mg 500mg 2g

ALUMINUM (Compounds)

13-1315	Aluminum oxide, 1000nm powder, surface area 6 m²/g, 99% (Grade	250g
NEW	APS 1 micron) (1344-28-1) Al_2O_3 ; FW: 101.96; white solid	1kg

AMMONIUM (Compounds)

26-3765 NEW **Tetramethylammonium ferricyanide, 98%** (14591-44-7) See page 41

BARIUM (Compounds)

56-8450 NEW

amp

Bis(pentamethylcyclopentadienyl)barium, 98% (112379-49-4) $C_{20}H_{30}Ba;$ FW: 407.78; white solid air sensitive, moisture sensitive

500mg 2g

HAZ Technical Note:

1. Barium precursor for Atomic Layer Deposition and Chemical Vapor Deposition (ALD/CVD) References:

1. J. Phys. Chem. A, 2007, 111, 8147

BIOCATALYSTS (Compounds)

06-3110 New	Alcalase® 2.4 L FG (9014-01-1) brown liq.; d. 1.17 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 2.4 AU-A/g. Serine endoprotease that hydrolyzes internal peptide bonds. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3112 New	Alcalase® 2.5 L (9014-01-1) amber liq. (semitransparent); d. 1.08 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 2.5 AU-A/g. Serine endoprotease that hydrolyzes internal peptide bonds. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3115 New	Esperase® 8.0 L (9014-01-1) amber liq. (semitransparent); d. 1.07 (<i>store cold</i>) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 8KNPU-E/g. Serine endoprotease that hydrolyzes internal peptide bonds. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3105 New	Lipozyme® CALB L (9001-62-1) yellow to light-brown liq.; d. 1.2 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 5000 LU/g. Lipase that hydrolyzes ester bonds in glycerides. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g

BIOCATALYSTS (Compounds)

06-3155 New	Lipozym® TL IM (9001-62-1) off-white immobilized granulate; d. 0.4 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 250 IUN/g. Lipase that hydrolyzes ester bonds in glycerides. It is a 1,3 specific lipase which is immobilized on a non-compressible silica gel carrier into an immobilized granulate. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3140 New	Lipozyme® TL 100 L (9001-62-1) yellow liq.; d. 1.05 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 100 KLU/g. Lipase that hydrolyzes ester bonds in glycerides. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3160 New	Neutrase® 0.8 L (9080-56-2) brown liq.; d. 1.26 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 0.8 AU/g. Kinetic resolution of amino esters is a neutral, zinc metallo endoprote- ase, that randomly hydrolyzes internal peptide bonds and also facilitates enzymatic synthesis of oligopeptides by the reverse proteolysis reaction with zinc metal as co-catalyst. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3100 New	NovoCor® AD L (9001-62-1) brown liq.; d. 1.17 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 6000 LU/g. Lipase that hydrolyzes ester bonds in glycerides. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3123 New	Novozyme® 435 (9001-62-1) off-white immobilized granulate; d. 0.4 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 10000 PLU/g. Lipase that hydrolyzes ester bonds in glycerides. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	5g 25g
06-3120 New	Novozym® 40086 (9001-62-1) brown immobilized granulate; d. 0.33 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 275 IUN/g. Lipase that hydrolyzes ester bonds in glycerides. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	5g 25g

BIOCATALYSTS (Compounds)

06-3135 (NEW)	Novozym® 51032 (9001-62-1) yellow to light-brown liq.; d. 1.04 (<i>store cold</i>) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 15 KLU/g. Lipase that hydrolyzes ester bonds in glycerides. Product may be hazy and contain slight precipitate. This does not affect enzyme activity or performance. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3118 New	Palatase® 20000 L (9001-62-1) brown liq.; d. 1.19 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 20000 LU-MM/g. Lipase that hydrolyzes ester bonds in glycerides. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	5g 25g 100g
06-3125 New	Resinase® HT (9001-62-1) yellow liq.; d. 1.05 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 50 KLU/g. Lipase that hydrolyzes ester bonds in glycerides. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3137 (New)	Savinase® 12 T (9014-01-1) off-white granulate; d. 1.3 (store cold) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 12 KNPU-S/g. Serine endoprotease that hydrolyzes internal peptide bonds. The granulate contains enzyme concentrate, inorganic salt, binder and coating materials. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
06-3150 New	Savinase® 16 L (<i>9014-01-1</i>) amber liq. (semitransparent); d. 1.16 (<i>store cold</i>) Note: Store at 0-10°C. DO NOT FREEZE. Declared activity 16 KNPU-S/g. A serine endoprotease that hydrolyzes internal peptide bonds. Color can vary from batch to batch. Color intensity is not an indication of enzyme activity. Packaging must be kept intact, dry and away from sunlight. Please follow the recommendations and use the product before the best before date to avoid the need for a higher dosage. Sold in collaboration with Novozymes A/S.	10g 50g 250g
BORON (C	ompounds)	
05-0120 NEW	Boron carbide, 0.1-1.5 microns (99.9+%-B) <i>(12069-32-8)</i> B ₄ C; FW: 55.26; gray to black pwdr.; SA: 22-27 m²/g; m. p. 2350°; b.p. >3500°; d. 2.52 Note: For sale in USA. For other countries contact Strem.	100g 500g

Chemical Characteristics:

B:C - 3.7-3.9 (ratio); C - min. 21.8%; N - max. 0.7%; O - max. 2.6%; Fe - max. 0.1%; Si - max. 0.15%; Al - max. 0.05%; M - max. 0.1%

BORON (Compounds)

05-0125 NEW	Boron nitride, hexagonal crystalline solid, min. 99% (10043-11-5) BN; FW: 24.82; off-white pwdr.	50g 250g
CALCIUM	l (Compounds)	
20-8450 New Haz	Bis(pentamethylcyclopentadienyl)calcium(II) tetrahydrofuran adduct, 98% (101200-05-9) $[(CH_3)_5C_5]_2Ca(C_4H_8O)_2$; FW: 454.74; pale yellow pwdr. air sensitive	500mg 2g
CARBON	(Elemental Forms)	
06-0310 NEW	Graphene film, monolayer, on Si/SiO ₂ wafer (1cm x1cm), by CVD (1034343-98-0) C; FW: 12.011; wafer	1рс
06-0222 NEW	Graphene nanoplatelets, (2-10nm thick x ~5 microns wide) (1034343-98-0) C; black solid	5g 25g
06-0323 NEW	Graphene oxide (0.8-1.2nm thick x 1-15 microns wide, made by the Staudenmaier Method) C; black pwdr.	250mg 1g
06-2545 NEW	Graphene oxide (4mg/ml water dispersion) (1034343-98-0) yellow-brown liq. dispersion	50ml 250ml
Dispersibility:	•	

Monolayer content (measured in 0.5 mg/mL): >95%*

*Note: 4 mg/mL tends to agglomerate the GO flakes and dilution followed by slight sonication is required in order to obtain a higher percentage of monolayer flakes

Elemental Analysis: (sample preparation: 2g of 4 wt% GO in water were dried under vacuum at 60°C overnight) *Carbon*: 49-56%; *Hydrogen*: 0-1%; *Nitrogen*: 0-1%; *Oxygen*: 41-50%; *Sulfur*: 0-2%

Quality Control:

Amount of residue on evaporation

pH control

Elemental analysis

Applications: Graphene/polymer composite materials, batteries, biomedical, solar cells, supercapacitors, support for metallic catalysts, low permeability materials, biosensors, multifunctional materials, graphene research References:

> 250mg 1g

1. J. Mater. Chem., 2011, 21, 9762.

2. Environ. Sci. Technol., 2013, 47, 3715.

3. Phys. Chem. Chem. Phys., 2013, 15, 2321.

06-2550 Graphene oxide, reduced (1034343-98-0) black pwdr.

NEW

Technical Notes:

Physical Properties:

Form: powder; Reduction method: chemically reduced; Sheet dimension: variable; Color. black; Solubility: insoluble; Dispersability: <0.1 mg/mL in NMP, DMF, DMSO; Humidity (Karl Fisher, TGA): 3.7-4.2%; Electrical conductivity: 666,7 S/m (measured in a 20 nm film thickness); BET surface area: 422.69 - 499.85 m²/g; Density: 1.91 g/cm³

Elemental Analysis: (sample preparation: 2g of 4 wt% GO in water were dried under vacuum at 60°C overnight) *Carbon*: 77-87%; *Hydrogen*: 0-1%; *Nitrogen*: 0-1%; *Oxygen*: 13-22%; *Sulfur*: 0%

Quality Control: Elemental analysis

Applications: Batteries, biomedical, solar cells, supercapacitors, printable graphene electronics, graphene research References:

1. Nano Letters, 2010, 10, 92.

2. J. Phys. Chem. Lett., 2013, 4, 1347.

CARBON (Elemental Forms)		
06-0313 NEW	Graphene powder (single layer, surface area 400-1000 m²/g) (1034343-98-0) C; FW: 12.011; black pwdr.	50mg
06-0318 NEW	Graphene powder (1-5 layers thick x 0.5-5 microns wide, surface area 650-750 m²/g) (1034343-98-0) C; FW: 12.011; black pwdr.	250mg 1g
06-2510 NEW	Monolayer Graphene on Cu (10 mm x 10 mm) (1034343-98-0) C; wafer	4рс

Technical Notes:

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); *Appearance*: Transparent; *Transparency*: >97%; *Coverage*: 98%; *Layers*: 1; *Thickness (theoretical)*: 0.345 nm; *FET Electron Mobility on Al*₂O₃: 2000 cm²/Vs; *FET Electron Mobility on SiO*₂: 4000 cm²/Vs; *Sheet Resistance on SiO*₂/Si: 410-490 Ω/sq (1 cm x 1 cm); *Grain size*: Up to 10 µm **Substrate Cu foil:**

Thickness: 18 µm

Pretreated for easier bottom layer removal: Monolayer graphene on the back side of Copper is partially removed, but not completely, so an additional treatment like RIE is needed before transfer to eliminate the bottom layer totally **Applications:** Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings **Quality Control:** Raman Spectroscopy and Optical Microscopy

References:

1. J. Electrochem. Soc., 2012, 159, A752.

2. J. Mater. Chem. A., 2013, 1, 3177.

06-2518	Monolayer Graphene on Cu (60 mm x 40 mm) (1034343-98-0)	1pc
NEW	C; wafer	

Technical Notes:

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); Appearance: Transparent; Transparency: >97%; Coverage: 95%; Layers: 1; Thickness (theoretical): 0.345 nm; FET Electron Mobility on Al₂O₃: 2000 cm²/Vs; FET Electron Mobility on SiO₂: 4000 cm²/Vs; Sheet Resistance on SiO₂/Si: 410-490 Ω/sq (1 cm x 1 cm); Grain size: Up to 10 µm

Substrate Cu foil:

Thickness: 18 µm

Pretreated for easier bottom layer removal: Monolayer graphene on the back side of Copper is partially removed, but not completely, so an additional treatment like RIE is needed before transfer to eliminate the bottom layer totally **Applications:** Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings **Quality control:** Raman Spectroscopy and Optical Microscopy References:

1. J. Electrochem. Soc., 2012, 159, A752.

2. J. Mater. Chem. A., 2013, 1, 3177.

06-2523 NEW Monolayer Graphene on Cu with PMMA coating (60mm x 40mm) (1034343-98-0) C; wafer 1pc

Technical Notes:

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); *Appearance*: Transparent; *Transparency*: >97%; *Coverage*: 95%; *Layers*: 1; *Thickness (theoretical)*: 0.345 nm; *FET Electron Mobility on Al*₂O₃: 2000 cm²/Vs; *FET Electron Mobility on SiO*₂: 4000 cm²/Vs; *Sheet Resistance on SiO*₂/Si: 410-490 Ω/sq (1 cm x 1 cm); *Grain size*: Up to 10 µm **Substrate Cu foil:**

Thickness: 18 µm

Pretreated for easier bottom layer removal: Monolayer graphene on the back side of Copper is partially removed, but not completely, so an additional treatment like RIE is needed before transfer to eliminate the bottom layer totally **Applications:** Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings **Quality control:** Raman Spectroscopy and Optical Microscopy

References:

1.J. Electrochem. Soc., 2012, 159, A752.

CARBON (Elemental Forms)

2. J. Mater. Chem. A., 2013, 1, 3177.

06-2534 NEW

Monolayer Graphene on SiO2/Si (10mm x 10mm) (1034343-98-0) C; wafer

4pc

Technical Notes:

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); Appearance: Transparent; Transparency: >97%; Coverage: 95%; Layers: 1; Thickness (theoretical): 0.345 nm; FET Electron Mobility on Al₂O₃: 2000 cm²/Vs; FET Electron Mobility on SiO₂: 4000 cm²/Vs; Sheet Resistance on SiO₂/Si: 410-490 Ω/sq (1 cm x 1 cm); Grain size: Up to 10 μm Substrate Cu foil:

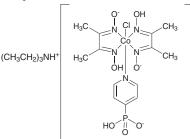
Dry Oxide Thickness: 285-315 nm; Type/Dopant: P/Bor; Orientation: <100>; Resistivity: <0.005 Ohm cm; Thickness: 505-545 µm; Front surface: single side polished; Back surface: etched; Particles: <10@0.3 µm Applications: Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings Quality control: Raman Spectroscopy and Optical Microscopy

References:

1. J. Electrochem. Soc., 2012, 159, A752

J. Mater. Chem. A., 2013, 1, 3177 2.

CARBON (Compounds)

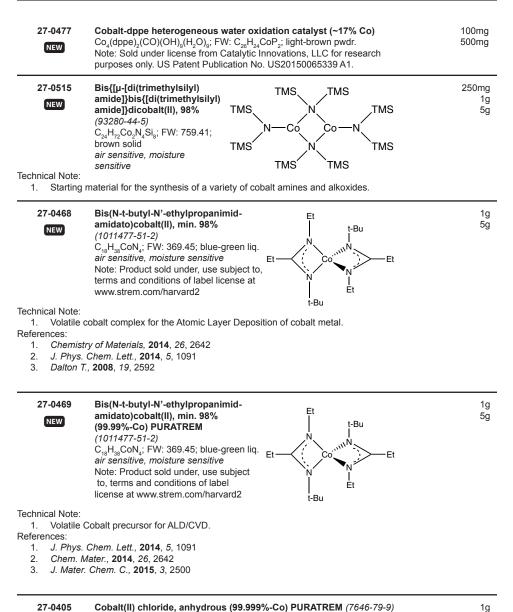

0/11/0011	(compounds)		
06-0135 New	1-t-Butyl-1H-indene, min. 95% (40650-31-5) $C_{13}H_{16}$; FW: 172.27; colorless liq.	tBu	250mg 1g
06-0483 NEW	(1R)-2,2'-Dibromo-1,1'-binaphthalene, min. 98% ($86688-08-6$) $C_{20}H_{12}Br_{2}$; FW: 412.12; white to light-yellow solid Note: Sold in collaboration with Daicel for research purposes only.	Br Br	50mg 100mg
06-0484 NEW	(1S)-2,2'-Dibromo-1,1'-binaphthalene, min. 98% ($1^{\circ}C_{20}H_{12}Br_{2}$; FW: 412.12; white to light-yellow pwdr. Note: Sold in collaboration with Daicel for research pu	50mg 100mg	
06-3155 New	Lipozym® TL IM (9001-62-1) See page 26		
06-3160 New	Neutrase® 0.8 L <i>(9080-56-2)</i> See page 26		
06-3105 New	Lipozyme® CALB L (9001-62-1) See page 25		
06-3100 New	NovoCor® AD L (9001-62-1) See page 26		
06-3110 New	Alcalase® 2.4 L FG (9014-01-1) See page 25		
06-3112 New	Alcalase® 2.5 L (9014-01-1) See page 25		

New Products Introduced Since Chemiker XXVIII (June 2015)

CARBON	(Compounds)
06-3115	Esperase® 8.0 L (9014-01-1)
NEW	See page 25
06-3118	Palatase® 20000 L (9001-62-1)
NEW	See page 27
06-3120	Novozym® 40086 (9001-62-1)
NEW	See page 26
06-3123	Novozyme® 435 (9001-62-1)
NEW	See page 26
06-3125	Resinase® HT (9001-62-1)
NEW	See page 27
06-3135	Novozym® 51032 (9001-62-1)
NEW	See page 27
06-3137	Savinase® 12 T (9014-01-1)
NEW	See page 27
06-3140	Lipozyme® TL 100 L (9001-62-1)
NEW	See page 26
06-3150	Savinase® 16 L (9014-01-1)
NEW	See page 27

COBALT (Compounds)

27-3015 Triethylammonium {chlorobis(dimethylglyoximato)(4-hydrogenphosphonatepyridinyl) cobaltate(III)} (1280199-86-1) C₁₉H₃₅CICoN₆O₇P; FW: 584.88; light-brown solid 5mg 25mg


Technical Notes:

- Synthetic cobaloxime catalyst for reduction of aqueous protons to hydrogen in the presence of atmospheric oxygen.
- 2. Catalyst containing phosphonate anchor groups for immobilization on metal oxide semiconductor surfaces, enabling light-driven hydrogen evolution.

References:

- 1. Angew. Chem. Int. Ed., 2012, 51, 9381
- Angew. Chem. Int. Ed., 2012, 51, 12749
- 3. Chem. Commun., 2011, 47, 1695
- 4. Chem. Sci., 2015, 6, 2727

COBALT (Compounds)

5g

1g

5g

25q

25g

Cobalt-catalyzed transformation of alkynyl C-H bond: aldehyde-alkyne-amine coupling.
Visit strem.com for new product announcements.

Dichlorobis(triphenylphosphine)cobalt(II), 98% (14126-40-0)

Catalyst used for alkyne-dihalomethaneamine couplings. - an efficient route for propargylamines.

CoCl₂; FW: 129.84; blue pwdr.

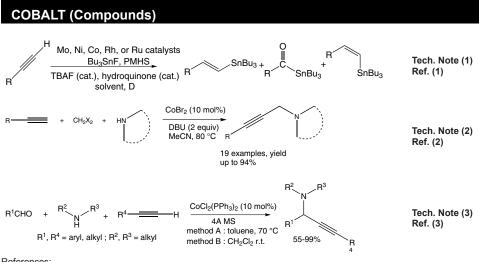
 $CoCl_{2}[P(C_{6}H_{5})_{3}]_{2}; FW: 654.41; blue pwdr.$

hygroscopic

air sensitive

Catalyst used for hydrostannations.

2.


3.

NEW

HAZ

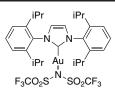
NEW

Technical Notes: 1. Catalvst

- References:
 - 1. Tetrahedron, 2013, 69, 4000
 - 2. Tetrahedron Lett., 2012, 53, 6199
 - 3. SynLett., 2010, 3, 475

CYLINDERS (CVD/ALD) & Adapters

95-0281 Stainless steel cylinder, 125ml, horizontal in line, with angled Bellows valve (150°C), DOT 4B, UN stamped NEW Note: Compatible with Arradiance and GEMStar systems.

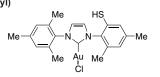

GOLD (Elements)

79-7010	Gold Gemini Nanorods, CTAB Free (Wavelength 650 nm) (7440-57-5)
NEW	See page 43
79-7015	Gold Gemini Nanorods, CTAB Free (Wavelength 700 nm) (7440-57-5)
NEW	See page 43
79-7025	Gold Gemini Nanorods, CTAB Free (Wavelength 800 nm) (7440-57-5)
NEW	See page 43
79-7020	Gold Gemini Nanorods, CTAB Free (Wavelength 750 nm) (7440-57-5)
NEW	See page 43
79-7030	Gold Gemini Nanorods, CTAB Free (Wavelength 850 nm) (7440-57-5)
New	See page 43

GOLD (Compounds)

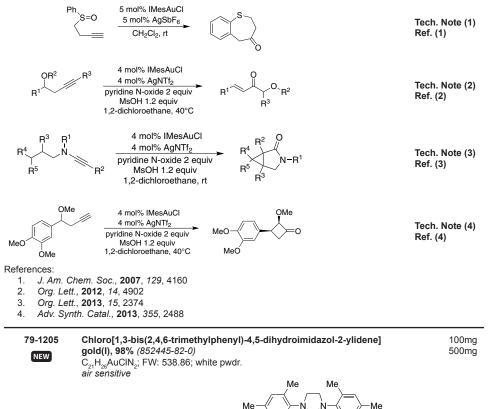
79-0245 NEW

[1,3-Bis(2,6-di-i-propylphenyl) imidazol-2-ylidene][bis(trifluoromethanesulfonyl)imide]gold(l), min. 95% (951776-24-2) C₂₉H₃₆AuF₆O₄S₂; FW: 824.69; white to pale yellow solid air sensitive


100ma 500ma

1cyl

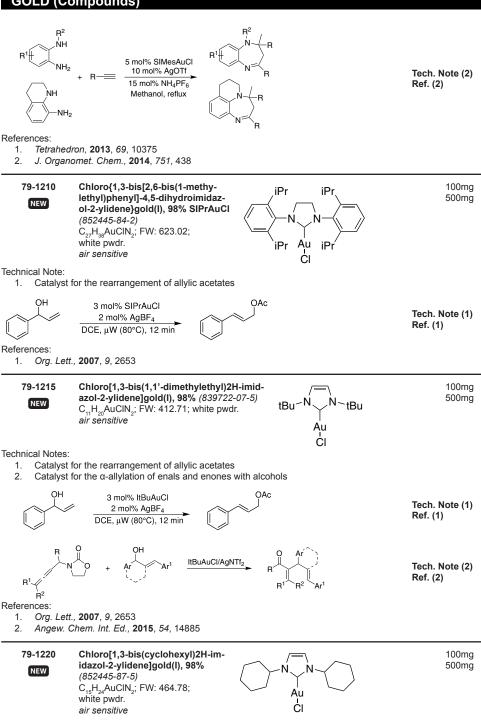
GOLD (Compounds)


Chloro[1,3-bis(2,4,6-trimethylphenyl) 2H-imidazol-2-ylidene]gold(l), 98% (852445-81-9) C₂₁H₂₄AuClN₂; FW: 536.85; M white pwdr. *air sensitive*

100mg 500mg

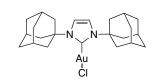
Technical Notes:

- 1. Catalyst for the rearrangement of alkynyl sulfoxides to benzothiepinones
- 2. Catalyst for the rearrangement of homopropargylic ethers to α,β-unsaturated carbonyl compounds
- 3. Catalyst for oxidative cyclopropanation of N-Allylynamides to 3-aza-bicyclo[3.1.0]-hexan-2-one derivatives
- 4. Catalyst for oxidative rearrangement of homopropargylic ethers to cyclobutanones


Technical Notes:

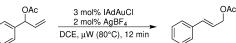
- 1. Catalyst for the carboheterofunctionalization of alkenes with arylboronic acids
- 2. Catalyst for the synthesis of 1-substituted benzo[b][1,4]diazepines

Ts NH +	PhB(OH) ₂	5 mol% SIMesAuCl 1.5 equiv SelectFluor CH ₃ CN, 80°C	Ts N Ph	Tech. Note (1) Ref. (1)
---------------	----------------------	---	---------------	----------------------------


Au Me Cl

GOLD (Compounds)

GOLD (Compounds)


79-1225 NEW Chloro[1,3-bis(adamantyl)2H-imidazol-2-ylidene]gold(l), 98% (852445-88-6) C₂₃H₃₂AuClN₂: FW: 568.93; white pwdr. air sensitive

100mg 500mg

Technical Note:

1. Catalyst for the rearrangement of allylic acetates

Tech. Note (1) Ref. (1)

References:

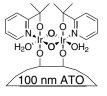
1. Org. Lett., 2007, 9, 2653

IRIDIUM (Compounds)

 77-0030
 Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder, 20 nm (conductive and acid-stable) blue pwdr. Note: Sold under license from Catalytic Innovations, LLC for research purposes only. US Patent Publication No. US20150021194 A1.

250mg 1g

Technical Notes:


ATO Composition: 90% SnO₂, 10% Sb₂O₃ (w/w) BET Surface Area: 50 – 60 m²/g Resistivity: 0.3 – 0.7 Ω •cm

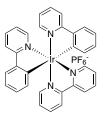
250mg 1g

Technical Notes: ATO Composition: 90% SnO₂, 10% Sb₂O₃ (w/w) BET Surface Area: 40 – 50 m²/g Resistivity: $0.05 - 0.08 \Omega$ •cm

77-0040 NEW Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder, 100 nm (conductive and acid-stable) blue pwdr. Note: Sold under license from Catalytic Innovations, LLC for research purposes only. US Patent Publication No. US20150021194 A1.

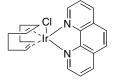
OH₂

250mg 1g


Technical Notes:

ATO Composition: 90% SnO_2, 10% Sb_2O_3 (w/w) BET Surface Area: 5 – 10 m^2/g Resistivity: 0.05 – 0.08 $\Omega{\, \bullet} cm$

IRIDIUM (Compounds)

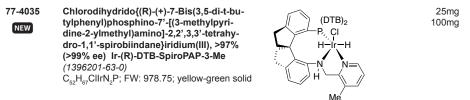


(2,2'-Bipyridine)bis[2-pyridinyl-kN) phenyl-kC]iridium(III) hexafluorophosphate, 99% (106294-60-4) [$Ir(C_{10}H_{8}N_{2})(C_{11}H_{8}N)_{2}]PF_{6}$; FW: 801.74; yellow pwdr. Note: photocatalytic catalyst

100mg 500mg

77-0258 NEW Chloro(1,5-cyclooctadiene) (1,10-phenanthroline)iridium(I) THF adduct, min. 98% (41396-69-4) $C_{20}H_{20}$ ClIrN(C_4H_8O); FW: 502.05 (574.16); purple solid *air sensitive*

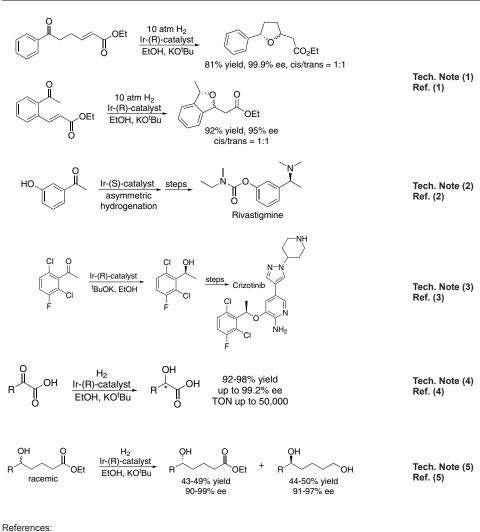
250mg 1g 5g


Technical Note:

1. Catalyst used in the C-H borylation of N-Boc-indoles.

References:

^{1.} Organometallics, 2014, 33, 3514

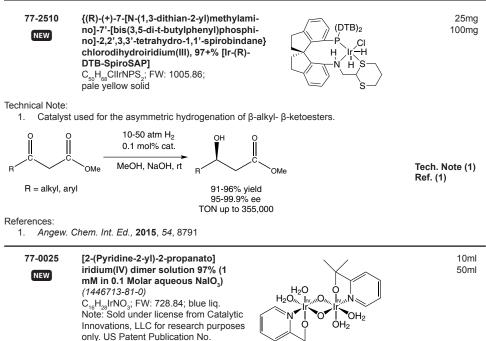


Technical Note:

This technical note is for both enantiomers 77-4035 [Ir-(R)-DTB-SpiroPAP-3-Me] and 77-4036 [Ir-(S)-DTB-SpiroPAP-3-Me]

- 1. Catalyst for the enantioselective synthesis of chiral disubstituted oxa-cyclic ethers
- 2. Catalyst for the enantioselective hydrogenation for the asymmetric synthesis of Rivastigmine
- 3. Catalyst for the asymmetric hydrogenation for the synthesis of Crizotinib
- 4. Catalyst for the asymmetric hydrogenation of α -keto acids
- 5. Catalyst for the kinetic resolution of racemic aliphatic alcohols via selective asymmetric hydrogenation

IRIDIUM (Compounds)



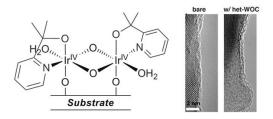
- 1. Org. Lett., 2012, 14, 4758.
- 2. Org. Process. Res. Dev., 2013, 17, 307.
- 3. Tetrahedron Lett., **2014**, 55, 1528.
- 4. Chem. Commun., 2014, 50, 15987.
- 5. J. Am. Chem. Soc., 2014, 136, 17426.

77-4036	Chlorodihydrido{(S)-(-)-7-Bis(3,5-di-t-butylphenyl)phosphi-	25mg
NEW	no-7'-[(3-methylpyridine-2-ylmethyl)amino]-2,2',3,3'-tetrahydro-	100mg
	1,1'-spirobiindane}iridium(III), >97% (>99% ee) Ir-(S)-DTB-SpiroPAP- 3-Me (1418483-59-6)	
	C ₅₂ H ₆₇ ClIrN ₂ P; FW: 978.75; yellow-green solid	

Technical Note: See 77-4035.

IRIDIUM (Compounds)

Technical Notes: Standard Operating Procedure


Heterogenization of the material is straightforward and can be performed in air, at ambient temperature, with no additives, applied potential or other treatment required. For most carbon-based or metal oxide substrates:

- 1. Dip substrate in het-WOC deposition solution (or disperse powders, if powder).
- 2. Wait 4-12 hours (typically overnight).

US20150021194 A1.

3. Remove substrate from solution (or filter out powder) and rinse with clean water.

This will cause the monolayer Ir material to be deposited on the substrate, with a surface structure as shown¹ (TEM image on iron oxide shown to the right):

The het-WOC deposition solution may be diluted, in order to increase its coverage over large substrates. As stated in the SDS, the het-WOC deposition solution it is mostly comprised of water, therefore dilution with water is best. It can also be re-used repeatedly to load multiple substrates with the Ir monolayer – each loading only uses a small amount of the Ir present in solution, depending on surface area of substrate.

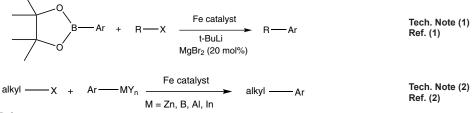
References:

- 1. J. Am. Chem. Soc., 2013, 135, 10837.
- 2. J. Am. Chem. Soc., 2014, 136, 13826.
- 3. Nat. Commun., 2015, 6, 6469.
- 4. Angew. Chem. Int. Ed., 2015, 54, 11428.
- 5. Energy Environ. Sci., 2016, 9, 1794.

info@strem.com . order@strem.com . technical@strem.com . quotation@strem.com

IRON (Compounds)

26-0923 NEW Dichloro[1,2-bis(diphenylphosphino)ethane] iron(II), 98% (41536-18-9) $C_{26}H_{24}Cl_2FeP_2$; FW: 525.17; white-gray xtls. *air sensitive*

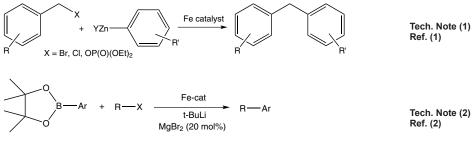


1g

5g

Technical Notes:

- 1. Catalyst used for the coupling of alkyl, benzyl and allyl halides with arylboronic esters.
- 2. Catalyst used for general cross-coupling reactions.

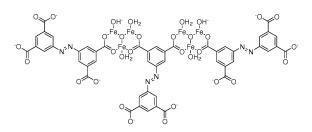

References:

- 1. Chem. Eur. J., 2014, 20, 7935
- 2. Angew. Chem. Int. Ed., 2013, 52, 1285

26-0945 NEW	Dichloro[1,3-bis(diphenylphosphino)propane]iron(II), 98% (106245-43-6) C ₂₇ H ₂₆ Cl ₂ FeP ₂ ; FW: 539.19; white pwdr. <i>air sensitive</i>	1g 5g
----------------	---	----------

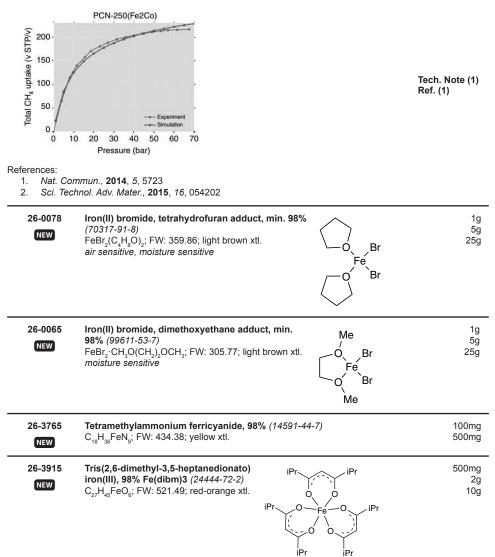
Technical Notes:

- 1. Iron precatalyst used in the cross-coupling of benzylhalides and phosphates.
- 2. Expedient iron-catalyzed coupling of alkyl, benzyl and allyl halides with arylboronic esters.


R = alkyl, benzyl, allyl

References:

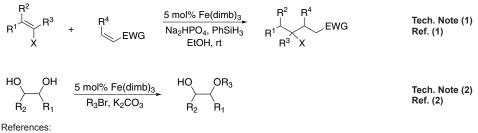
- 1. Chem. Commun., 2009, 5, 600
- 2. Chem-Eur. J., 2014, 20, 7935


26-3725 NEW	Iron azobenzene tetracarboxylic, Porous [PCN-250(Fe)], CONEKTIC™ F250 (1771755-22-6) C ₄₈ H ₂₀ N ₆ O ₃₂ Fe ₃ ; Dark red-brown pwdr. Note: Sold in collaboration with framergy for research purposes only. PCT/GB2014/053506	500mg 2g 10g

IRON (Compounds)

Technical Note:

 Metal-Organic Framework (MOF) exhibiting superior uptake of hydrogen and methane. Stable in water and aqueous solutions.

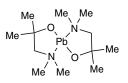


IRON (Compounds)

Technical Notes:

1. Iron catalyst for olefin cross-coupling

2. Iron catalyst for regioselective alkylation of diols and polyols



1. Nature, 2014, 516, 343.

2. Chem. Eur. J., 2016, 22, 2481.

LEAD (Compounds)

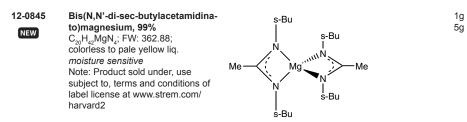
82-2155 NEW $\begin{array}{l} \textbf{Bis(1-dimethylamino-2-methyl-2-propanolate)lead(II), 98\% Pb(DMAMP)_{z}}\\ (934302\text{-}16\text{-}6)\\ \textbf{C}_{12}\textbf{H}_{28}\textbf{N}_{2}\textbf{O}_{2}\textbf{Pb}; FW: 439.56; white solid \end{array}$

250mg 1g 5g

Technical Note:

1. Volatile compound used in the Chemical Vapor Deposition of lead oxide.

References:


1. Eur. J. Org. Chem., 2014, 2014, 1327

82-2180	Methylammonium triiodoplumbate(II) (40wt% solution in DMF)	2g
NEW	(99.99+%-Pb) (69507-98-8) [CH ₂ NH ₂]+PbI ₂ ; FW: 616.96; clear yellow lig.; d. 1.368	10g
HAZ	$[O_{1_3}^{-1}]^{-1}$ $D_{3_2}^{-1}$, 1.000 , $O_{10,300}^{-1}$, $O_$	

LUTETIUM (Compounds)

71-1080	Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)lutetium(III), 99%	1g
NEW	(99.9+%-Lu) (REO) [Lu(TMHD) ₃] (15492-45-2)	5g
	$Lu(C_{11}H_{19}O_2)_3$; off-white xtl.	25g

MAGNESIUM (Compounds)

IOLYBD	ENUM (Compounds)	
42-9028 New	Bis(acetonitrile)tetracarbonylmolybdenum(0), 98% (14126-87-5) C ₈ H ₈ N ₂ O ₄ Mo; FW: 290.08; yellow solid <i>air sensitive</i>	250m 1 5
42-1550 New	Molybdenum disilicide, 0.4-5.0 microns (99+%-Mo) (12136-78-6) MoSi ₂ ; FW: 152.13; black solid	50 250
ANOMA	TERIALS (Elemental Forms)	
79-7010 New	Gold Gemini Nanorods, CTAB Free (Wavelength 650 nm) (7440-57-5) Au; violet liq. <i>light sensitive, (store cold)</i> Note: Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in Collaboration with SONA Nanotech for research purposes only. Gold Gemini Nanorods Kit component.	5m 25m
79-7015 New	Gold Gemini Nanorods, CTAB Free (Wavelength 700 nm) (7440-57-5) Au; blue liq. <i>light sensitive, (store cold)</i> Note: Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in Collaboration with SONA Nanotech for research purposes only. Gold Gemini Nanorods Kit component.	5m 25m
79-7020 New	Gold Gemini Nanorods, CTAB Free (Wavelength 750 nm) (7440-57-5) Au; red-purple liq. <i>light sensitive, (store cold)</i> Note: Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in Collaboration with SONA Nanotech for research purposes only. Gold Gemini Nanorods Kit component.	5n 25n
79-7025 New	Gold Gemini Nanorods, CTAB Free (Wavelength 800 nm) (7440-57-5) Au; red-orange liq. <i>light sensitive, (store cold)</i> Note: Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in Collaboration with SONA Nanotech for research purposes only. Gold Gemini Nanorods Kit component.	5m 25m
79-7030 New	Gold Gemini Nanorods, CTAB Free (Wavelength 850 nm) (7440-57-5) Au; maroon-purple liq. <i>light sensitive, (store cold)</i> Note: Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in Collaboration with SONA Nanotech for research purposes only. Gold Gemini Nanorods Kit component.	5m 25m

NANOMA	TERIALS (Elemental Forms)	
06-0310 NEW	Graphene film, monolayer, on Si/SiO ₂ wafer (1cm x1cm), by CVD (1034343-98-0) See page 28	
06-0222 NEW	Graphene nanoplatelets, (2-10nm thick x ~5 microns wide) (1034343-98-0) See page 28	
06-0323 NEW	Graphene oxide (0.8-1.2nm thick x 1-15 microns wide, made by the Staudenmaier Method) See page 28	
06-2545 New	Graphene oxide (4mg/ml water dispersion) (1034343-98-0) See page 28	
06-2550 New	Graphene oxide, reduced (1034343-98-0) See page 28	
06-0313 NEW	Graphene powder (single layer, surface area 400-1000 m²/g) (1034343-98-0) See page 29	
06-0318 NEW	Graphene powder (1-5 layers thick x 0.5-5 microns wide, surface area 650-750 m²/g) (1034343-98-0) See page 29	
06-2510 NEW	Monolayer Graphene on Cu (10 mm x 10 mm) (1034343-98-0) See page 29	
06-2518 NEW	Monolayer Graphene on Cu (60 mm x 40 mm) (1034343-98-0) See page 29	
06-2523 NEW	Monolayer Graphene on Cu with PMMA coating (60mm x 40mm) (1034343-98-0) See page 29	
06-2534 New	Monolayer Graphene on SiO2/Si (10mm x 10mm) (1034343-98-0) See page 30	
14-8820 NEW	SBA-15 Molecular Sieve (7631-86-9)	1g 5g
NANOMA	TERIALS (Compounds)	
77-0030 NEW	Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder, 20 nm (conductive and acid-stable) See page 36	
77-0035 New	Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder, 50 nm (conductive and acid-stable) See page 36	
77-0040 NEW	Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder, 100 nm (conductive and acid-stable) See page 36	
50-0518 NEW	Tin(IV) oxide, nanoparticle (30-60 nm), (99.7%-Sn) (18282-10-5) SnO ₂ ; FW: 150.69; white pwdr.; SA: 18.55; m. p. 1630°; d. 6.95	25g 100g

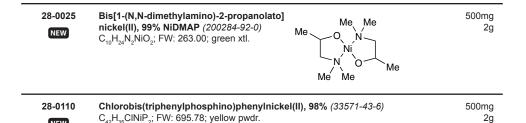

NICKEL(Compounds)

28-1720 † NEW

Bis{P,P'-1,5-diphenyl-3,7-bis[(4-hydrogenphosphonate)

phenyl]-1,5,3,7-diazadiphosphocine} nickel(II) bromide (hydrogen bromide adduct) (1514896-39-9)

 $C_{60}H_{69}Br_3N_4NiO_{12}P_8$; FW: 1584.41; red-brown xtls. air sensitive, moisture sensitive



Technical Notes:

- 1. Synthetic nickel catalyst used for photocatalytic reduction of aqueous protons to hydrogen.
- 2. Catalyst containing phosphonate anchor groups for immobilation on metal oxide semiconductor surfaces, enabling light-driven hydrogen evolution.

References:

- 1. Angew. Chem. Int. Ed., 2014, 53, 11538
- 2. J. Amer. Chem. Soc., 2014, 136, 356

NEW Technical Notes:

1. Self-immobilizing, binuclear neutral nickel catalyst for ethylene polymerization.

air sensitive, moisture sensitive

- 2. Ligand steric and electronic effects on β -ketiminato neutral nickel(II) olefin polymerization catalysts.
- 3. Accessible, highly active single-component β-ketiminato neutral nickel(II) catalysts for ethylene
- polymerization.

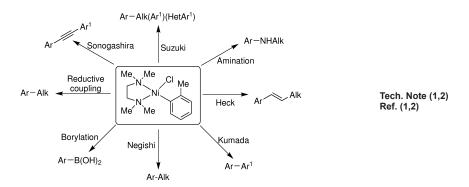
 Highly active neutral nickel(II) catalysts for ethylene polymerization bearing modified β-ketoiminato ligands. References:

- 1. J. Mol.Catal A:Chem,. 2013, 380, 139
- 2. Organometallics, **2012**, 31, 966
- 3. Organometallics, 2010, 29, 2306
- 4. Organometallics, 2009, 28, 5697

 28-0165
 Chloro(2-methylphenyl)(N,N,N,Ntetramethyl-1,2-ethylenediamine)nickel(II), 99% (contains about 5% o-chlorotoluene) NiCl(o-tolyl)(TMEDA) (1702744-45-3) C_{1,3}H₂₃ClN₂Ni; FW: 301.48; dark-orange pwdr. *air sensitive* Me
 500mg

 Ni
 0
 0
 0

 Ni
 0
 0
 </tr


Technical Notes:

- 1. Air-Stable Nickel precatalyst for cross-coupling
- 2. Precatalyst allowing various ligands to be used (mono- and bidendate phosphines, diimines and NHCs)

5mg

25mg

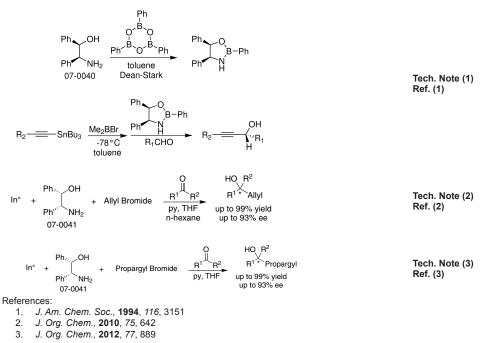
NICKEL(Compounds)

References:

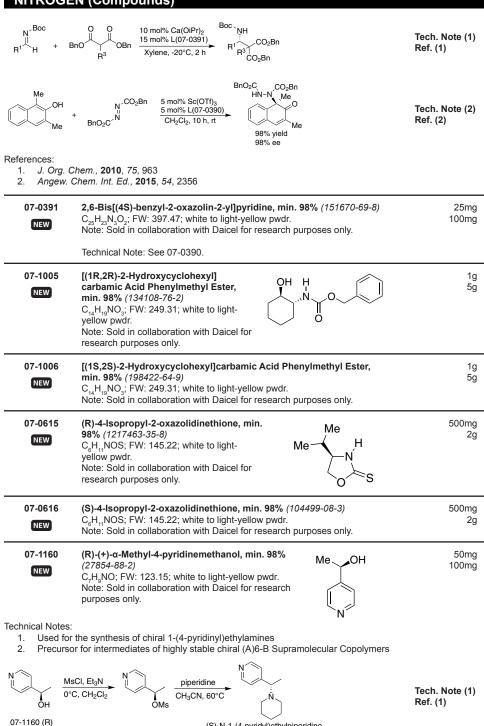
- 1. ACS Catal., 2015, 5, 3120
- 2. Org. Lett., 2015, 17, 2166

NITROGEN (Compounds)

07-0040 NEW

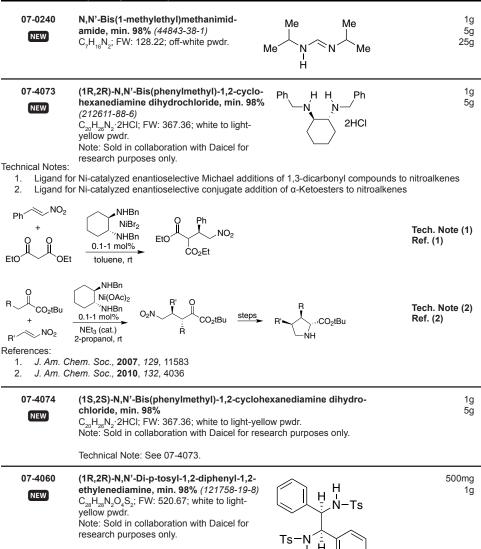

(1R,2S)-2-Amino-1,2-diphenylethanol, min.

98% (23190-16-1) C₁₄H₁₅NO; FW: 213.28; white to light-yellow pwdr. Note: Sold in collaboration with Daicel for research purposes only.


Technical Notes:

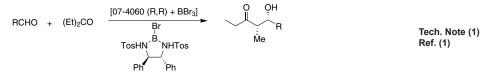
- 1. Ligand used to make chiral oxaborolidines for the enantioselective alkynylation of aldehydes
- 2. Ligand used in organoindium reagents for asymmetric Barbier-type allylations
- 3. Ligand used in organoindium reagents for asymmetric Barbier-type propargylations
- Note: This technical note is for both enantiomers 07-0040 and 07-0041

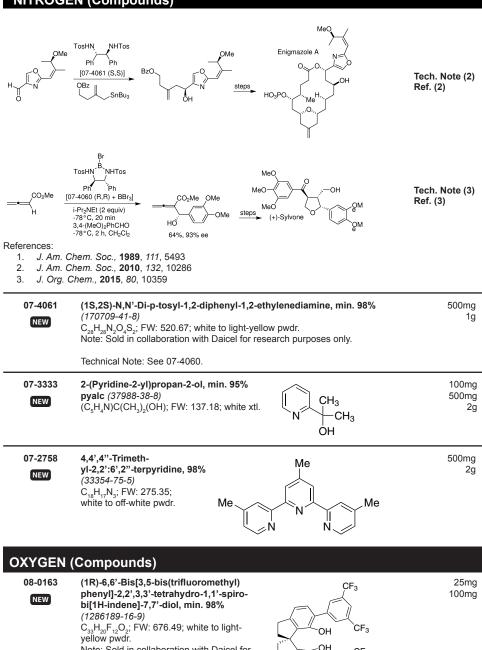
ical Note: See 07-0040. P-Amino-3-methyl-N-2-pyridinyl- amide, min. 98% (<i>1568043-19-5</i>) N ₃ O; FW: 193.25; white to light- pwdr. Sold in collaboration with Daicel for the purposes only. pper-catalyzed asymmetric aldol reaction m is for (S)-enantiomer, 07-0518 $\frac{mol\% Cu(SbF_{6})_2/L(07-0518)}{30 h, 80\% yield} \qquad \qquad$	100mg 500mg Tech. Note (1) Ref. (1) 100mg 500mg 500mg 2g
amide, min. 98% (1568043-19-5) N ₃ O; FW: 193.25; white to light- pwdr. Sold in collaboration with Daicel for the purposes only. pper-catalyzed asymmetric aldol reaction m is for (S)-enantiomer, 07-0518 $\frac{mol\% Cu(SbF_6)_2/L(07-0518)}{30 h, 80\% yield} \qquad \qquad$	500mg Tech. Note (1) Ref. (1) 100mg 500mg
n is for (S)-enantiomer, 07-0518 $\begin{array}{c} \text{mol\% Cu(SbF_6)_2/L(07-0518)}\\ \hline 30 \text{ h, 80\% yield}\\ \hline \text{Anti/Syn 11/1, 96\% ee} \end{array} \qquad $	Ref. (1) 100mg 500mg 500mg
30 h, 80% yield Anti/Syn 11/1, 96% ee , 2011, 47, 224 -Amino-3-methyl-N-2-pyridinylbutanamide, min. 98% 61-43-0) N ₃ O; FW: 193.25; white to light-yellow pwdr. Sold in collaboration with Daicel for research purposes only. ical Note: See 07-0519. R)-2-Benzylamino-1-cyclohexanol.	Ref. (1) 100mg 500mg 500mg
-Amino-3-methyl-N-2-pyridinylbutanamide, min. 98% 61-43-0) N ₃ O; FW: 193.25; white to light-yellow pwdr. Sold in collaboration with Daicel for research purposes only. ical Note: See 07-0519.	500mg
R)-2-Benzylamino-1-cyclohexanol.	
R)-2-Benzvlamino-1-cvclohexanol.	
NO; FW: 209.30; white to light- pwdr. Sold in collaboration with Daicel for ch purposes only.	-9
5)-2-Benzylamino-1-cyclohexanol, min. 98% (322407-34-1) NO; FW: 205.30; white to light-yellow pwdr. Sold in collaboration with Daicel for research purposes only.	500mg 2g
s(aminomethyl)pyridine, min. 85% (34984-16-2) N ₃ ; FW: 137.18; low melting yellow solid <i>Isitive</i> N NH ₂	1g 5g
s[(4R)-benzyl-2-oxaz- -yl]pyridine, min. 98% 15-38-9) N ₃ O ₂ ; FW: 397.47; to light-yellow pwdr. Sold in collaboration with for research purposes only.	25mg 100mg
	Sold in collaboration with Daicel for research purposes only. s(aminomethyl)pyridine, min. 85% (34984-16-2) I ₃ ; FW: 137.18; low melting yellow solid isitive NH ₂ s[(4R)-benzyl-2-oxaz- yl]pyridine, min. 98% 15-38-9) N ₃ O ₂ ; FW: 397.47; o light-yellow pwdr. Sold in collaboration with


NITROGEN (Compounds)

(S)-N-1-(4-pyridyl)ethylpiperidine

NITROGEN (Compounds)			
References: 1. J. Org. C	H, DMF gyl bromide , 3 h, 95% Chiral Supramolecular Copolymer Chem., 2004 , 69, 6781 them. Soc., 2011 , 133, 11124	Tech. Note (2) Ref. (2)	
07-1161 NEW	(S)-(-)- α -Methyl-4-pyridinemethanol, min. 98% (54656-96-1) C ₇ H ₉ NO; FW: 123.15; white to light-yellow pwdr. Note: Sold in collaboration with Daicel for research purposes only.	50mg 100mg	
	Technical Note: See 07-1160.		
07-0785 New	N-[(1R,2R)-2-Hydroxycyclohexyl] acetamide, min. 98% (214348-95-5) C ₈ H, ₅ NO ₂ ; FW: 157.21; white to light- yellow pwdr. Note: Sold in collaboration with Daicel for research purposes only.	1g 5g	
07-0786 NEW	N-[(15,25)-2-Hydroxycyclohexyl]acetamide, min. 98% (190848-36-3) $C_gH_{1g}NO_2$; FW: 157.21; white to light-yellow pwdr. Note: Sold in collaboration with Daicel for research purposes only.	1g 5g	
07-1170 NEW Technical Notes:	$\begin{array}{c} (2R)-(\cdot)-N-Methyl-\alpha,\alpha-diphenyl-2-pyrrolidine-\\methanol, min. 98\% (144119-12-0)\\ C_{18}H_{21}NO; FW: 267.37; white to light-yellow pwdr.;\\ m. p. 68-71^{\circ}\\ Note: Sold in collaboration with Daicel for\\research purposes only. \end{array} \qquad \begin{array}{c} Ph\\ OH\\ He\\ He\\ He\\ He\\ He\\ He\\ He\\ He\\ He\\ H$	100mg 250mg	
 Chiral ar aldehyde Pyrrolidii 	nino alcohol assisted asymmetric, enantioselective, aryl transfer of triphenylbo es in the presence of chiral amino alcohols derived from (S)-proline. nylmethanol compound used for the zinc-catalyzed addition of arylboronic acid roceeding in high yields and high enantioselectivities (up to 98% ee).		
(PhBO) ₃ —— He:	Et ₂ Zn xane, 60oC Toluene, 0°C H Ph up to 96% e.e.	Tech. Note (1) Ref. (1)	
	+ $B(OH)_2$ + Et_2Zn $1. Ligand (20 mol%)$ R^2 P	Tech. Note (2) Ref. (2)	
07-1171 New	(2S)-(+)-N-Methyl-α,α-diphenyl-2-pyrrolidinemethanol, min. 98% (110529-22-1) $C_{18}H_{21}NO;$ FW: 267.37; white to pale-yellow pwdr.; m. p. 66-69° Note: Sold in collaboration with Daicel for research purposes only.	100mg 250mg	
	Technical Note: See 07-1170.		


NITROGEN (Compounds)


Technical Notes:

- 1. Chiral reagent used the natural product synthesis of the rice and corn weevil aggregation pheromone sitophilure
- 2. Chiral reagent used in the total synthesis of enigmazole A
- 3. Chiral reagent used in the enantioselective synthesis of Furan Lignan (+)-Sylvone

This tech note includes both enantiomers (R,R) # 07-4060 and (S,S) # 07-4061

NITROGEN (Compounds)

Note: Sold in collaboration with Daicel for

research purposes only.

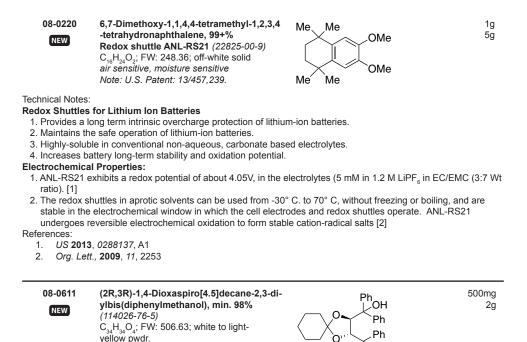
CF₃

CF₃

OXYGEN (Compounds)

08-0164 NEW	(1S)-6,6'-Bis[3,5-bis(trifluoromethyl)phenyl]-2,2',3,3'-tetrahydro-1,1'- spirobi[1H-indene]-7,7'-diol, min. 98% (1258327-01-3) C ₃₃ H ₂₀ F ₁₂ O ₂ ', FW: 676.49; white to light-yellow pwdr. Note: Sold in collaboration with Daicel for research purposes only.	25mg 100mg
08-0185 New	(R)-(-)-6,6'-Dibromo-1,1'-bi-2-naphthol, 98% (99% ee) ($65283-60-5$) C ₂₀ H ₁₂ Br ₂ O ₂ ; FW: 444.12; white to light- yellow pwdr. Note: Sold in collaboration with Daicel for research purposes only. Br	500mg 2g
08-0186 NEW	(S)-(+)-6,6'-Dibromo-1,1'-bi-2-naphthol, 98% (99% ee) (80655-81-8) C ₂₀ H ₁₂ Br ₂ O ₂ ; FW: 444.12; white to light-yellow solid Note: Sold in collaboration with Daicel for research purposes only.	500mg 2g
08-0152 New	(R)-(+)-6,6'-Dibromo-2,2'-bis(methoxy- methoxy)-1,1'-binaphthalene, min. 98% (99% ee) $(179866-74-1)$ C ₂₄ H ₂₀ Br ₂ O ₄ ; FW: 532.22; white to light-yellow pwdr.; m. p. 133° Note: Sold in collaboration with Daicel for research purposes only.	100mg 500mg
08-0153 New	(S)-(-)-6,6'-Dibromo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene, min. 98% (99% ee) (211560-97-3) $C_{24}H_{20}Br_{2}O_{4}$; FW: 532.22; white to light-yellow pwdr.; m. p. 133° Note: Sold in collaboration with Daicel for research purposes only.	100mg 500mg
08-0215 NEW	1,4-Di-t-butyl-2,5-bis(2-methoxyethoxy)benzene , 99+% Redox shuttle ANL-RS2 (1350770-63-6) $C_{20}H_{34}O_4$; FW: 338.48; white to off-white pwdr.; m. p. 69-70° <i>air sensitive, moisture sensitive</i> Note: U.S. Patent: 8,609,287. European Patent App.: 11787270.5. Chinese Patent App.: 11/80014192.6 $tBu = \sqrt{-0}$	1g 5g
 Provides a Maintains the 		

4. Increases battery long-term stability and oxidation potential.


Electrochemical Properties:

- 1. ANL-RS2 (abbreviated DBBB) redox shuttle, compared to other dimethoxybenzene-based shuttles, has demonstrated improved solubility in carbonate-based electrolytes. DBBB displays a reversible redox potential at 3.9 V [1]
- In comparison to a variety of quinoxaline-based species, DBBB exhibits reversible single electron transfer at 4 V vs. Li/Li+. Quinoxaline and its derivatives demonstrate two redox events between 4-3 V vs. Li/Li+ [2]
- DBBB enriched electrolyte was demonstrated as an effective protection against overcharge abuse in 18650 format LiFePO₄ based lithium ion batteries [3]
- Due to excellent solubility in carbonate-based electrolytes and improved electrolyte conductivity, DBBB is compatible with modest battery technologies [4-5].

References:

- 1. Energy Environ. Sci., 2012, 5, 8204
- 2. Adv. Energy Mater., 2012, 2, 1390
- 3. J. Power Sources, 2014, 247, 1011
- 4. J. Electrochem. Soc., 2014, 161, A1905
- 5. J. Electrochem. Soc., 2016, 163, A1.

OXYGEN (Compounds)

(2S,3S)-1,4-Dioxaspiro[4.5]decane-2,3-diylbis(diphenylmethanol),

Note: Sold in collaboration with Daicel for research purposes only.

PALLADIUM (Compounds)

46-0065 NEW

08-0612

NEW

Allyl(cyclopentadienyl)palladium(II), 98% (1271-03-0) $C_8H_{10}Pd$; red solid air sensitive, (store cold)

Note: Sold in collaboration with Daicel for

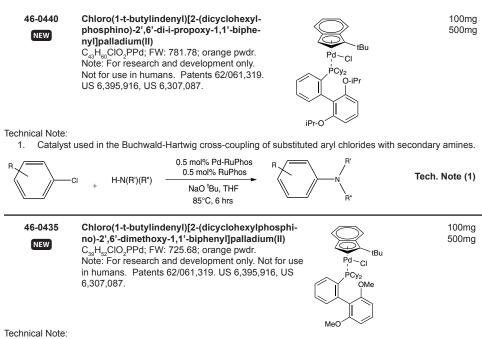
C₃₄H₃₄O₄; FW: 506.63; white to light-yellow pwdr.

research purposes only.

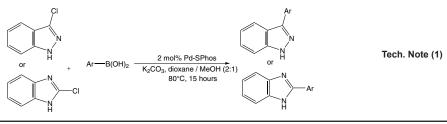
min. 98% (123287-35-4)

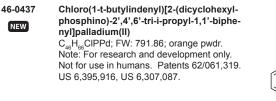
OH

100mg 500mg 2g


500ma

2g


Technical Notes:


1. Volatile palladium catalyst with numerous uses in CVD and MOCVD applications. References:

- 1. Chem.Eur.J., 2012, 19, 13652
- 2. Catalysis Letters, 2012, 142, 313
- 3. Chemistry of Materials, 2009, 21, 2360
- 2. Starting material for the in situ generation of active palladium catalysts.
 - References:
 - 1. Syn. Lett., 2014, 25, 2488
 - 2. Org. Lett., 2013, 15, 5932
 - 3. Angew.Chem.Int.Ed., 2013, 52, 4466

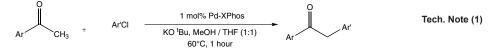
1. Catalyst used in the Suzuki cross-coupling of 3-chloroindazole or 3-chlorobenzimidazole with arylboronic acids.

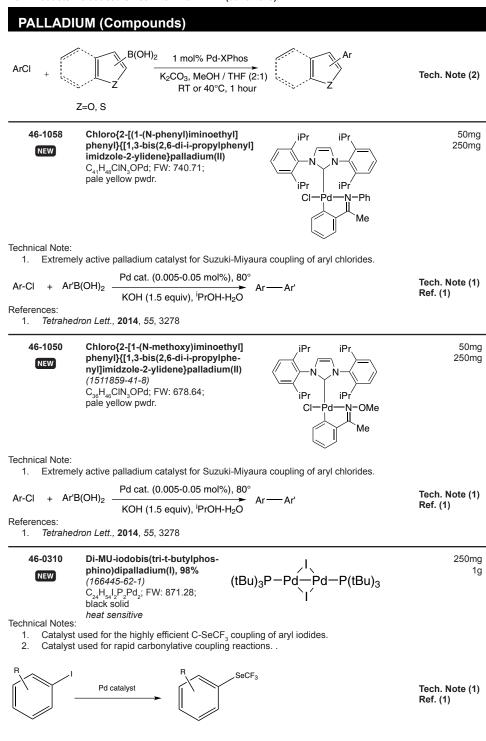
100mg 500mg

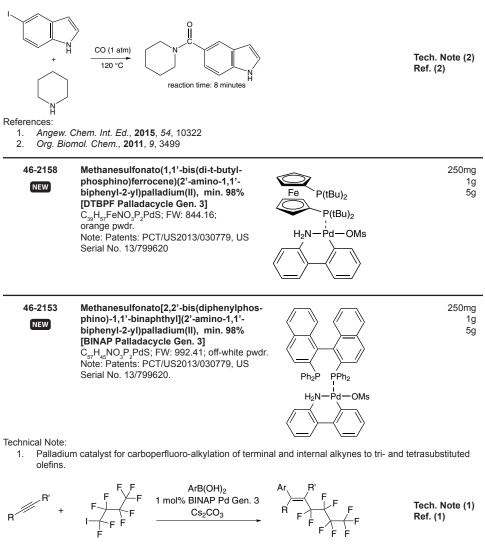
tBu

iPr

Pd~Cl

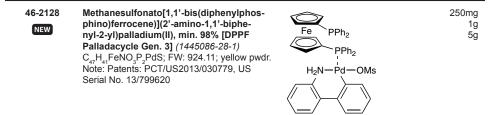

PCy₂

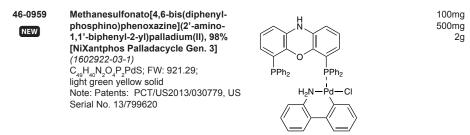

iPr


iPr

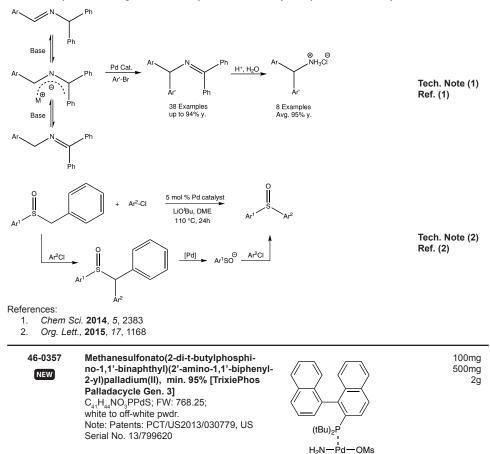
Technical Notes:

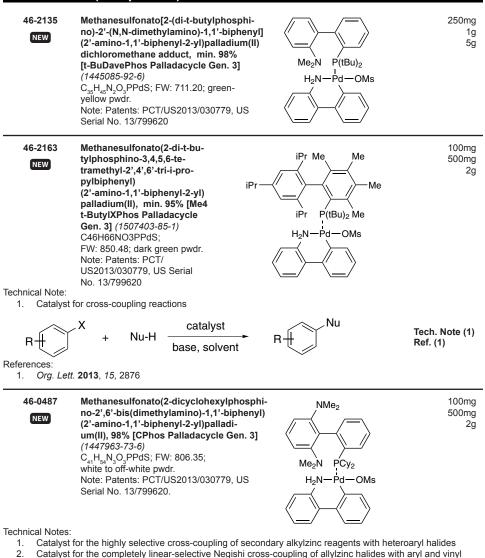
- 1. Catalyst used in the α -arylation of ketones.
- 2. Catalyst used in the Suzuki cross-coupling of aryl chlorides with boronic acid-substituted benzofurans.



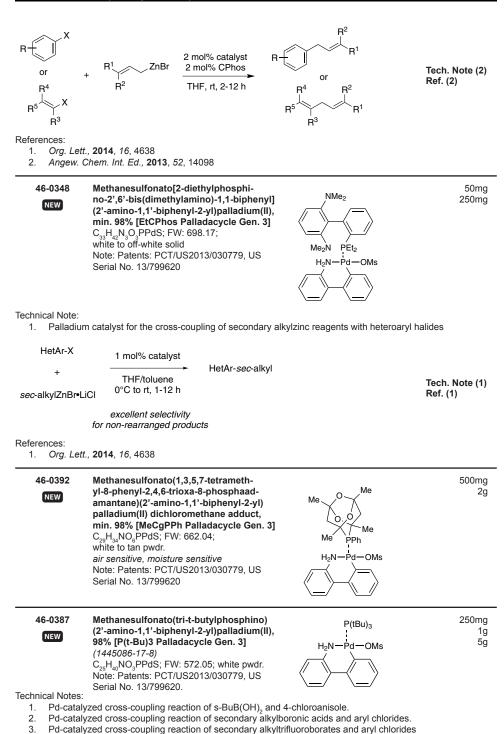


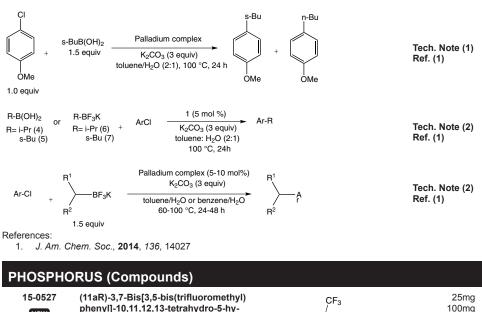
References:


1. ACS Catal., 2016, 6, 3452.



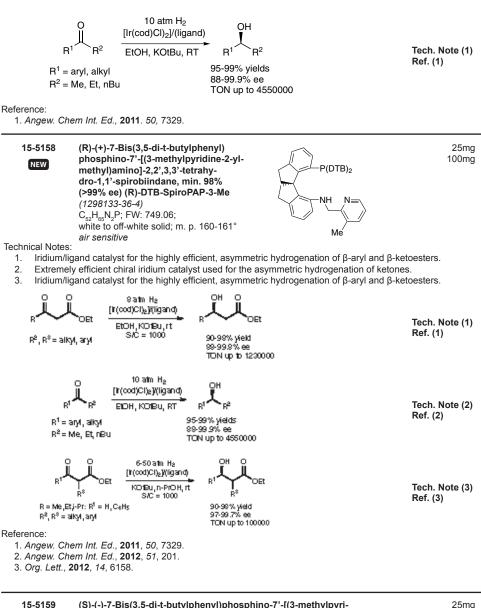
Technical Notes:


- 1. Synthesis of diarylmethylamines via palladium-catalyzed arylation of 1,1,3-triaryl-2-azaallyl anions.
- 2. Catalyst used in the generation of diaryl sulfoxides from aryl benzyl sulfoxides and aryl chlorides.



electrophiles

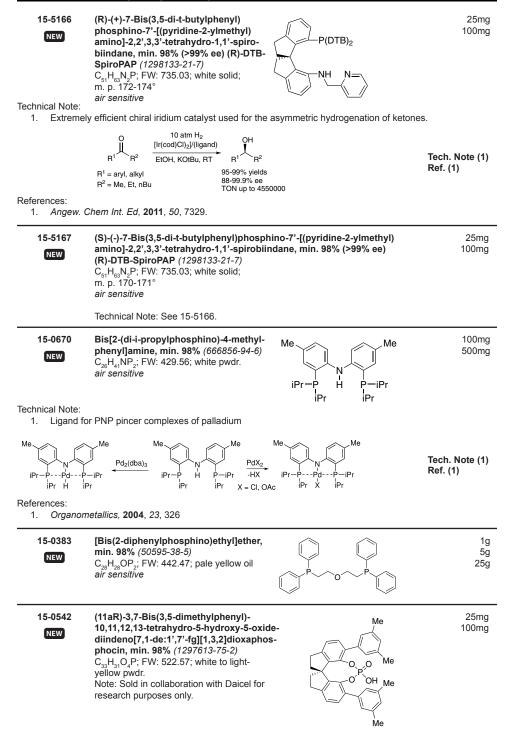
HetAr-X	1 mol% catalyst		
+ <i>sec</i> -alkylZnBr∙LiCl	THF/toluene 0°C to rt. 1-12 hr	HetAr- <i>sec-</i> alkyl	Tech. Note (1) Ref. (1)
Sec-aikyizIIDI · LICI	0 C to ft, 1-12 ff		



(NEW)	(http://j.l.doi.org/1.100000000000000000000000000000000000	CF ₃ CF ₃ CF ₃	100mg
15-0528 New	(11aS)-3,7-Bis[3,5-bis(trifluoromethyl)ph dro-5-hydroxy-5-oxide-diindeno[7,1-de: cin, min. 98% (1258327-07-9) $C_{33}H_{19}F_{12}O_4P$; FW: 738.46; white to light-yee Note: Sold in collaboration with Daicel for r	1',7'-fg][1,3,2]dioxaphospho- llow pwdr.	25mg 100mg
15-5147 New	(R)-(+)-7-Bis(3,5-di-t-butylphenyl)phosphino-7'-[(4-t-butylpyridine-2-ylmethyl) amino]-2,2',3,3'-tetrahydro-1,1'-spirobindane, min. 98% (>99% ee) (R)-DTB-SpiroPAP-4-t-Bu (1298133-38-6) $C_{ss}H_{7,1}N_2P$; FW: 791.14; white solid; m.p. 86-88° air sensitive		25mg 100mg
15-5148 New	(R)-(+)-7-Bis(3,5-di-t-butylphenyl) phosphino-7'-[(6-methylpyridine-2-yl- methyl)amino]-2,2',3,3'-tetrahy- dro-1,1'-spiroblindane, min. 98% (>99% ee) (R)-DTB-SpiroPAP-6-Me (1298133-26-2) $C_{s2}H_{es}N_2$ P; FW: 749.06; white solid; m.p. 153-155° air sensitive		25mg 100mg

Technical Notes:

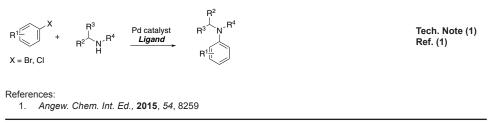
1. Extremely efficient chiral iridium catalyst used for the asymmetric hydrogenation of ketones.

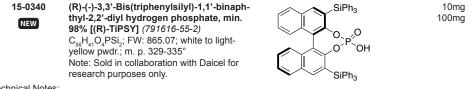


NEW

(S)-(-)-7-Bis(3,5-di-t-butylphenyl)phosphino-7'-[(3-methylpyridine-2-ylmethyl)amino]-2,2',3,3'-tetrahydro-1,1'-spirobiindane, min. 98% (>99% ee) S)-DTB-SpiroPAP-3-Me $C_{s2}H_{66}N_2P$; FW: 749.06; white to off-white solid; m. p. 162-164° air sensitive

Technical Note: See 15-5158.

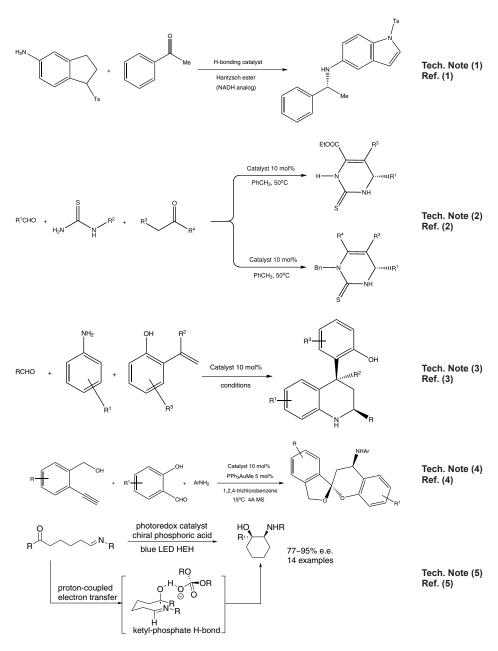

100mg



15-0543 New	(11aS)-3,7-Bis(3,5-dimethylphenyl)-10,11,12,13-tetrahydro-5- hydroxy-5-oxide-diindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocin, min. 98% (1412439-82-7) $C_{33}H_{31}O_4P$; FW: 522.57; white to light-yellow pwdr. Note: Sold in collaboration with Daicel for research purposes only.	25mg 100mg	
15-3020 New	2-[Bis(3,5-trifluoromethyl- phenylphosphino)-3,6-dime- thoxy]-2',6'-di-i-propoxy-1,1'-bi- phenyl, 98% (1810068-31-5) $C_{36}H_{31}F_{12}O_4P$; FW: 786.58; white to off-white pwdr. Note: Patents: US 6,395,916, US 6,307,087	250mg 1g 5g	
Technical Note: 1. Ligand for the Palladium-catalyzed arylation of α-Branched Secondary Amines			
X R ¹ ++ X = Br, Cl References: 1. Angew.	$\begin{array}{c} R^{3} \\ R^{2} \\ R^{2} \\ H \end{array} \xrightarrow{R^{4}} Pd \text{ catalyst} \\ H \\ R^{2} \\ R^{4} \\ R^{1} \\ H \\ R^{1} \\ H \\ R^{1} \\ H \\ R^{1} \\ H \\ R^{1} \\ R^{2} \\ R^{2$	Tech. Note (1) Ref. (1)	
15-3015 New	2-[Bis(3,5-trifluoromethyl- phenylphosphino)-3,6-dime- thoxy]-2',6'-dimethylamino-1,1'-bi- phenyl, 98% (1810068-30-4) $C_{34}H_{29}F_{12}N_2O_2P$; FW: 756.56; white to off-white pwdr. Note: Patents: US 6,395,916, US 6,307,087	100mg 500mg 2g	

Technical Note:

1. Ligand for the Palladium-catalyzed arylation of α-Branched Secondary Amines



Technical Notes:

- 1. A chiral phosphoric acid catalyst providing a highly stereoselective method for the reductive amination of heterocyclic amines.
- Chiral phosphoric acid used for the enantioselective Biginelli and Biginelli-like reactions. 2.

- Chiral phosphoric acid organocatalyst used in the asymmetric, three-component Povarov reaction involving 2-hydroxystyrenes. An efficient method to access structurally diverse *cis*-disubstituted tetrahydroquinolines in high stereoselectivities of up to >99:1 dr and 97% ee.
- A gold/chiral phosphoric acid catalyst used for the highly stereoselective, three-component reaction of salicylaldehydes, anilines, and alkynols to give aromatic spiroacetals in high yields and stereoselectivities.
- 5. aza-Pinacol Cyclization

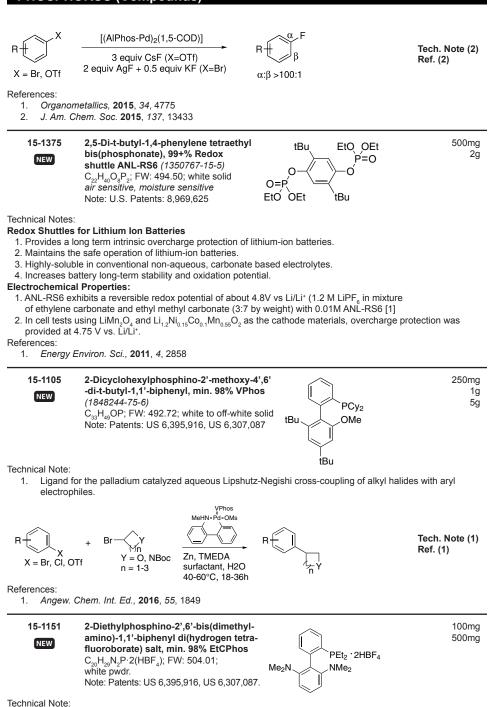
New Products Introduced Since Chemiker XXVIII (June 2015)

PHOSPHORUS (Compounds)

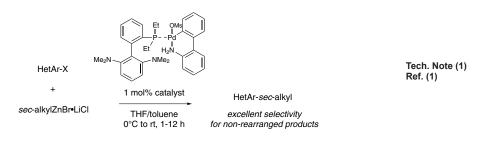
References:

- 1. J. Am. Chem. Soc. 2006, 128, 84
- J. Am. Chem. Soc. 2009, 131, 15301
 J. Am. Chem. Soc. 2012, 134, 6970
 Org. Lett., 2013, 15, 460

- 5. J. Am. Chem. Soc. 2013, 135, 17735

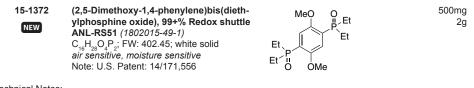

15-0341 NEW	(S)-(+)-3,3'-Bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate, min. 98% [(S)-TiPSY] (929097-92-7) C ₅₆ H ₄ ,O ₄ PSi ₂ ; FW: 865.07; white to light-yellow solid; m. p. 329-335° Note: Sold in collaboration with Daicel for research purposes only.	10mg 100mg
	Technical Note: See 15-0340.	
15-3010 New	2-(t-Butylphenylphosphino)-2',6'-dimethyl- amino-1,1'-biphenyl, 98% (t-Bu)PhCPhos (1660153-91-2) C ₂₆ H ₃₃ N ₂ P; FW: 404.53; white to off-white pwdr. Note: Patents: US 6,395,916, US 6,307,087	250mg 1g 5g
Technical Note:	a the Delladium actebrand Duchused Hartsin areas as alies of his data devices	
 Ligand for halides 	or the Palladium-catalyzed Buchwald-Hartwig cross-coupling of hindered primary	amines and aryi
Ar-X +	$\begin{array}{ccc} R & & Gen. 3 Pd/L \\ H_2N & R'' & NaOtBu, 80-120^{\circ}C \\ 1.4-dioxane & H \end{array} \qquad \begin{array}{c} R \\ Ar & R'' \\ R'' \\ \end{array}$	Tech. Note (1) Ref. (1)
References:		
1. J. Am. C	hem. Soc., 2015 , 137, 3085	
15-0690 New HAZ	Chloro(t-butyl)phenylphosphine, 97% (29949-69-7) C ₁₀ H ₁₄ CIP; FW: 200.65; colorless liq. <i>air sensitive, moisture sensitive</i>	1g 5g
28-0110 NEW	Chlorobis(triphenylphosphino)phenylnickel(II), 98% (33571-43-6) See page 45	
15-2065 (NEW)	2-(Diadamantylphosphi- no)-3-methoxy-2',4',6'-tri-i-pro- pyl-3'-(2,3,5,6-tetrafluoro-4-bu- tylphenyl)-1,1'-biphenyl AlPhos ($105783-60-1$) C ₅₂ H ₅₇ F ₄ OP; FW: 815.06; white to yellow pwdr. <i>air sensitive</i> Note: Patents: US 6,395,916, US 6,307,087	100mg 500mg 2g
	, , , , , , , , , , , , , , , , , , , ,	
∏ x. ⊮ _{Br}	2 eq AgF 0.5 eq KF 2% [(AlPhos-Pd)2(1,5-COD)]	Tech. Note (1) Ref. (1)

x ⊮ Br Z = S, O, NRX = N, CH


TBME, 130°C, 14 h

65

Tech. Note (1) Ref. (1)



1. Ligand used in palladium-catalyzed cross-coupling of secondary alkylzinc reagents with heteroaryl halides Note: Technical note shown is for 46-0348, EtCPhos Palladacycle Gen. 3

References:

1. Org. Lett., 2014, 16, 4638

Technical Notes:

Redox Shuttles for Lithium Ion Batteries

- 1. Provides a long term intrinsic overcharge protection of lithium-ion batteries.
- 2. Maintains the safe operation of lithium-ion batteries.
- 3. Highly-soluble in conventional non-aqueous, carbonate based electrolytes.
- 4. Increases battery long-term stability and oxidation potential.

Electrochemical Properties:

 ANL-RS51 exhibits a reversible redox potential of about 4.6V vs Li/Li+ (1.2 M LiPF₆ in 3:7 wt/wt mixture of ethylene carbonate and ethyl methyl carbonate).

References:

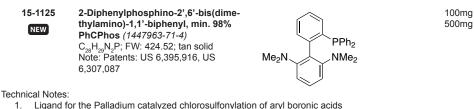
1. US 20150221982, A1, 6, Aug, 2015

15-1365 NEW (2,5-Dimethoxy-1,4-phenylene) bis(di-i-propylphosphine oxide), 99+% Redox shuttle ANL-RS5 (1426397-81-0) $C_{20}H_{36}O_4P_2$; FW: 402.45; white pwdr. *air sensitive*, *moisture sensitive* Note: U.S. Patent: 14/171,556

250mg 1g

Technical Notes:

Redox Shuttles for Lithium Ion Batteries

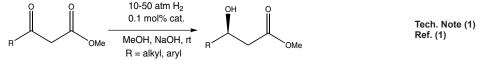

- 1. Provides a long term intrinsic overcharge protection of lithium-ion batteries.
- 2. Maintains the safe operation of lithium-ion batteries.
- 3. Highly-soluble in conventional non-aqueous, carbonate based electrolytes.
- 4. Increases battery long-term stability and oxidation potential.

Electrochemical Properties:

- ANL-RS5 (abbreviated BPDB) exhibits a reversible redox potential of about 4.5V vs Li/Li⁺ (1.2 M LiPF₆ in 3:7 wt/wt mixture of ethylene carbonate and ethyl methyl carbonate) [1]
- 2. Provides stable overcharge protection for 4V MCMB (mesocarbon microbead)/LMO (LiMn $_2O_4$) cells delivering 95 cycles of 100% overcharge at room temperature [1]

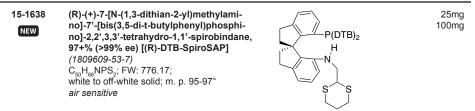
References:

- 1. J. Mater. Chem., A, 2015, 3, 10710.2
- 2. J. Power Sources, 2014, 247, 1011
- 3. J. Electrochem. Soc. 2014, 161, A1905
- 4. J. Electrochem. Soc. 2016, 163, A1

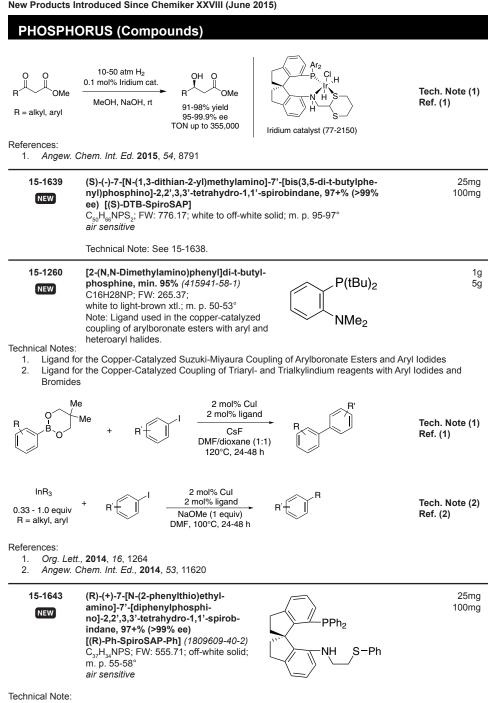


- 2. Ligand for the Palladium-catalyzed Buchwald-Hartwig cross-coupling of hindered primary amines and aryl halides
- 2 mol% Gen. 3 Pd/L B(OH)₂ 5 mol% Na₂CO₃ Tech. Note (1) Ref. (1) acetone (0.5 M) 50°C, 12 h Gen. 3 Pd/L Tech. Note (2) NaOtBu, 80-120°C Ref. (2) 1.4-dioxane References: 1. J. Am. Chem. Soc., 2013, 135, 10638 J. Am. Chem. Soc., 2015, 137, 3085 2. 15-1613 (R)-(+)-7-[N-(2-benzylthio)ethyl-25ma amino]-7'-[bis(3,5-di-t-butylphenyl) 100ma NEW phosphino]-2,2',3,3'-tetrahy-P(DTB)₂ dro-1,1'-spirobindane, 97+% (>99% ee) [(R)-DTB-SpiroSAP-Bn] (1809609-52-6) S -Bn C₅₄H₆₈NPS; FW: 794.16; off-white solid air sensitive

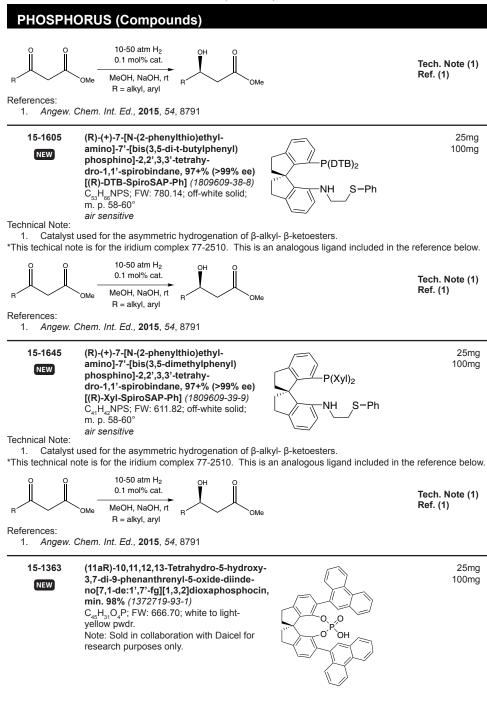
Technical Note:


1 Catalyst used for the asymmetric hydrogenation of β-alkyl- β-ketoesters.

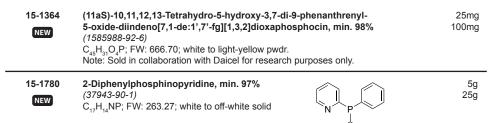
*This technical note is for the iridium complex 77-2510. This is an analogous ligand included in the reference below.


References:

1. Angew. Chem. Int. Ed., 2015, 54, 8791

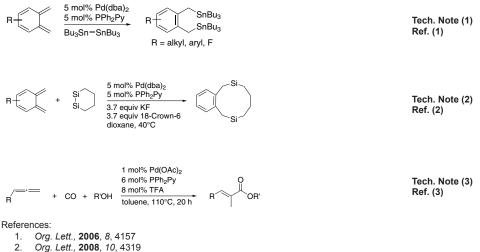

Technical Note:

Chiral P-N-S Spiro Ligand used in the Iridium-catalyzed asymmetric Hydrogenation of Ketoesters 1.



1. Catalyst used for the asymmetric hydrogenation of β-alkyl- β-ketoesters.

*This technical note is for the iridium complex 77-2510. This is an analogous ligand included in the reference below.



PHOSPHORUS (Compounds)

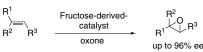
Technical Notes:

- 1. Ligand for the palladium-catalyzed distannylation of ortho-quinodimethanes
- Ligand for the palladium-catalyzed disilylation of o-quinodimethanes to synthesize 9- and 10-membered 2. disilacarbocycles
- 3. Ligand for the palladium-catalyzed alkoxycarbonylation of allenes

3 J. Am. Chem. Soc., 2015, 137, 8556

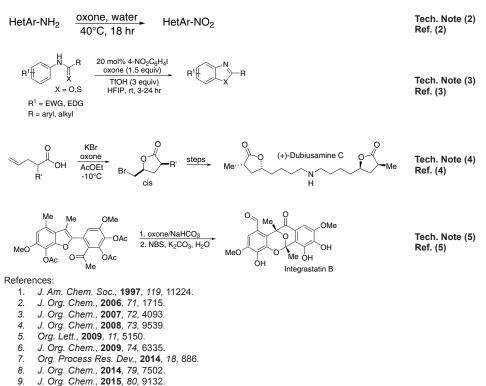
POTASSIUM (Compounds)

19-539	5
--------	---


Potassium monoperoxysulfate OXONE® (70693-62-8)

25q 100g

NEW HAZ 2KHSO₅·KHSO₄·K₂SO₄; FW: 307.37; white solid


Technical Notes:

- 1. Reagent for the catalytic asymmetric Shi epoxidation
- 2. Reagent for the synthesis of nitro heteroaromatics in water
- 3. Reagent for the syntheses of benzoxazoles and benzothiazoles using aryl iodides via C-H functionalization and C-O/S bond formation
- Reagent used for bromolactonization in the asymmetric total synthesis of (+)-Dubiusamine C 4
- 5. Reagent for the benzofuran oxidative dearomatization cascade in the total synthesis of Integrastatin B

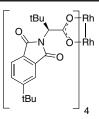
Tech. Note (1) Ref. (1)

POTASSIUM (Compounds)

10. Org. Lett., **2016**, *18*, 1458.

RHENIUM (Compounds)

75-2385 NEW Trifluoromethylsulfonatotricarbonyl(2,2'-bipyridine)rhenium(I), 99% (97170-94-0) $C_{14}H_{6}T_{N_2}O_{6}ReS; FW: 575.49;$ light yellow pwdr.

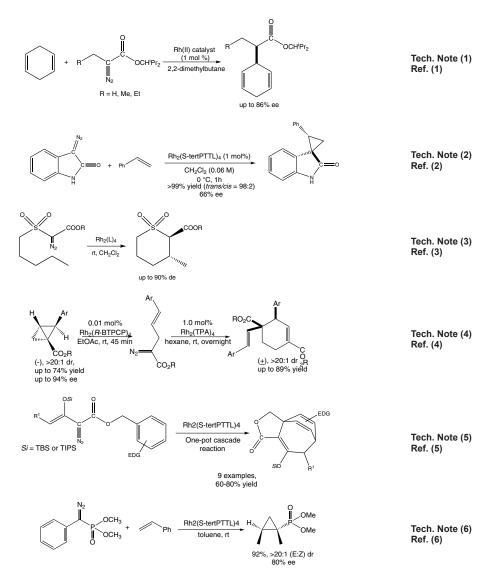


100mg 500mg

RHODIUM (Compounds)

45-2105 NEW Tetrakis[N-5-t-butyl-phthaloyl-(S)-tert-leucinato]dirhodium bis(ethyl acetate) adduct Rh2(S-tertPTTL)4 $C_{72}H_{gg}N_4O_{16}Rh_2$; FW: 1471.30; green pwdr. Note: Sold for research and development

purposes only. Patent 2014. 2014903620.



50mg 250mg

Technical Notes:

RHODIUM (Compounds)

- Catalyst used for the asymmetric, intermolecular C-H insertion of 1,4-cyclohexadiene with α-alkyl-α-diazoesters.
- 2. Catalyst used for a catalytic cyclopropanation using diazooxindole.
- 3. Catalyst used for the asymmetric, intramolecular C-H insertion of sulfonyldiazoacetates.
- Catalyst used for the enantioselective synthesis of 2-arylbicyclo[1.1.0]butane carboxylates.
- Access to the [3.2.2] nonatriene structural frameworks via an intramolecular cyclopropenation/ Buchner reaction/Cope rearrangement cascade.
- 6. Catalyst used for the cyclopropanation of styrene with dimethyl-α-diazobenzylphosphonate.

RHODIUM (Compounds)

References:

- 1. Heterocycles, 2012, 86, 1647
- 2. SynLett, 2013, 24, 29
- 3. Tetrahedron-Asymmetry, 2013, 24, 151
- 4. Org. Lett., **2013**, *15*, 310
- 5. Org. Lett., 2015, 17, 790
- 6. Tetrahedron Lett., **2016**, 57, 852
- 7. Chem. Eur. J., 2016, 22, 1

RUTHENIUM (Compounds)

44-8165 Bis(1,1,1-trifluoro-2,4-pentanedionat	
(1,5-cyclooctadiene)ruthenium(II), 98 (38704-78-8) C ₁₈ H ₂₀ F ₆ O ₄ Ru; FW: 515.41; red-brown low melting solid; b.p. 120-160/1 mm	3%

	Me	
44-0610 NEW	Hexaammineruthenium(II) chloride, 98% (15305-72-3) Ru($(NH_3)_6CI_2$; FW: 274.16; pale yellow pwdr. air sensitive, moisture sensitive,	250mg 1g 5g

50mg 250mg

SILICON (Compounds)

98-8810 New Haz	Bis(diethylamino)silane, 99% (99.999%-Si) BDEAS PURATREM (27804-64-4) SiH ₂ [N(CH ₂ CH ₃) ₂] ₂ ; FW: 174.36; colorless liq. air sensitive, moisture sensitive	5g 25g
14-1925 New	2,2-Dimethyl-3,6,9-trioxa-2-siladecane, 99+% Electrolyte Solvent ANL-1NM2 ($62199-57-9$) $C_8H_{20}O_3Si; FW: 192.33; colorless liq.air sensitive, moisture sensitiveNote: U.S. Patent: 8,475,688MeQ \sim \sim \sim Q$	500mg 2g

MeO____O___O__SiMe₃

Technical Notes:

Organosilicon Electrolytes for Lithium Ion Batteries

- 1. Silicon based electrolytes with polyethylene glycol oligomers improve thermal and electrochemical stability of lithium-ion batteries
- 2. Increases battery long-term stability
- 3. Are less flammable then conventional organic carbonate-based solvents and maintain the safe operation of batteries
- 4. Improves conductivity and kinetics of the lithium salts

Electrochemical and Physical Properties

- 1. Viscosity: 0.9 cP at 25°C; Conductivity: $1.2 \times 10^{-3} \text{ S cm}^{-1}$ at 25°C
 - (1.0 M LiTFSI); Boiling point: 190-191°C; Glass transition temperature: -129°C [1-3].
- 2. Soluble electrolytic lithium salt LiTFSI; Less soluble LiBOB.
- 3. Silylated electrolytes show much better electrochemical stability than its carbon and germanium analogues [3].
- 4. Compare to other trimethylsilylated polyethyleneoxide oligomers, the chain with two and three (see also ANL-1NM3; product # 14-1930). Ethylene oxide units in certain electrolytic blends are advantageous for the conductivity and the kinetics of the lithium salts [3-4].

References:

- 1. Electrochem. Commun., 2006, 8, 429
- 2. J. Phys. Chem. C, 2008, 112, 2210
- 3. J. Mater. Chem., 2008, 18, 3713
- 4. J. Power Sources, 2014, 272, 190

SILICON (Compounds)

14-1930 NEW

2,2-Dimethyl-3,6,9,12-tetroxa-2-silatridecane, 99+% Electrolyte Solvent ANL-1NM3 (864079-62-9)

C₁₀H₂₄O₄Si; FW: 236.38; colorless liq.

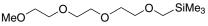
Note: Use for batteries for medical devices expressly excluded. U.S.

Patent: 8,076,032

.O SiMe₃ MeO

Technical Notes:

Organosilicon Electrolytes for Lithium Ion Batteries


- 1. Silicon based electrolytes with polyethylene glycol oligomers improve thermal and electrochemical stability of lithium-ion batteries
- 2. Increases battery long-term stability.
- 3. Are less flammable as conventional organic carbonate-based solvents and maintain the safe operation of batteries.
- 4. Improves conductivity and kinetics of the lithium salts

Electrochemical and Physical Properties:

- 1. Viscosity: 1.4 cP at 25°C, doped with 0.8M LiBOB electrolyte 1.9 cP at 25°C; Conductivity: of 0.8M LiBOB doped electrolyte: 1.18 x 10⁻³S cm⁻¹ at 25°C; Thermally stable up to 400°C. Boiling point 233-234°C; Glass transition temperature -116°C [1, 2].
- Soluble electrolytic lithium salts: LiBOB, LiPF6 (03-0325), LiBF₄ (03-0325 Strem product not battery grade) and LiTFSI
- 3. ANL-1NM3 electrolytes show excellent charge/discharge cycling behavior in lithium-ion cells. Silane-based electrolytes with certain lithium salts are stable to 4.4 V [1]
- 4. Compared to other trimethylsilylated polyethyleneoxide oligomers the chain with two (see also ANL-1NM2; product # 14-1925) and three ethylene oxide units in certain electrolytic blends is advantageous for the conductivity and the kinetics of the lithium salts [2]. In some cases ANL-1NM3 is more preferable material because of higher boiling point (233-234°C vs 190-191°C of ANL-1NM2)and a low viscosity.
- 5. ANL-1NM3 doped with Lithium salts exhibit high ionic conductivity (more than 10⁻³S cm⁻¹) at room temperature. Lithium bis(oxalate)borate (LiBOB) salt blended silicon electrolyte is showing most stable and higher electrochemical performance [3-5]. In addition silylated electrolytes show much better electrochemical stability than its carbon and germanium analogues [6].
- 6. Organosilicon electrolyte helps to enhance the transport properties of other electrolytes [7], shows excellent thermal and electrochemical stability [8] and also applicable for Li-air batteries [9]
- References:
 - 1. Electrochem. Commun., 2006, 8, 429
 - 2. Phys. Chem. C, 2008, 112, 2210
 - 3. J. Power Sources, 2011, 196, 2255
 - 4. J. Power Sources, 2011, 196, 8301
 - 5. J. Phys. Chem. C, 2011, 115, 24013
 - 6. J. Mater. Chem., **2008**, 18, 3713
 - 7. J. Phys. Chem. C, 2010, 114, 20569
 - 8. J. Power Sources, 2013, 241, 311
 - 9. J. Phys. Chem. C, 2011, 115, 25535

14-1946 Solvent ANL-1S1M3 (864079-63-0) C₁₁H₂₆O₄Si; FW: 250.41; colorless liq. air sensitive, moisture sensitive Note: Use for batteries for medical devices expressly excluded. U.S.

Patent: 8,076,032

Technical Notes:

Organosilicon Electrolytes for Lithium Ion Batteries

1. Silicon based electrolytes with polyethylene glycol oligomers improve thermal and electrochemical stability of lithium-ion batteries

2. Increases battery long-term stability

3. Are less flammable as conventional organic carbonate-based solvents and maintain the safe operation of batteries

4. Improves conductivity and kinetics of the lithium salts;

Electrochemical and Physical Properties:

- 1. Viscosity 2.0 cP at 25°C; Conductivity of 0.8M LiBOB electrolyte: 1.29 x 10⁻³ S cm⁻¹at 25°C. Boiling point 245°C; Glass transition temperature -110°C [1, 2].
- 2. Soluble electrolytic lithium salts: LiBOB, LiPF, (03-0325), and LiTFSI
- 3. ANL-1S1M3 is non-hydrolyzable and less flammable than their alkoxysilane counterparts [2].

info@strem.com . order@strem.com . technical@strem.com . quotation@strem.com

1g

5g

1g

5q

SILICON (Compounds)

4. ANL-1S1M3 electrolyte cell test showed good cycling performance in lithium-ion batteries. The cell was charged and discharged at a C/5 rate and cycled between 3.0 and 4.2 V at room temperature. It exhibits excellent cycling performance with only 9% capacity loss over 200 cycles [2].

References:

- 1. Electrochem. Commun., 2006, 8, 429
- 2. J. Mater. Chem., 2010, 20, 8224

14-7126 NEW	Silicon carbide (alpha phase), 0.2-1.2 microns (99%-Si) (409-21-2) SiC; FW: 40.10; light-gray pwdr.	100g 500g
14-7120 New	Silicon carbide (>90% beta phase), 0.1-1.2 microns (99%-Si) (409-21-2) SiC; FW: 40.10; gray pwdr.	50g 250g
14-7123 NEW	Silicon carbide (>90% beta phase), 0.2-5.0 microns (99+%-Si) (409-21-2) SiC; FW: 40.10; light-gray pwdr.	50g 250g
14-7410 NEW	Silicon nitride (>90% alpha phase), 0.2-4.0 microns (99%-Si) (12033-89-5) Si ₃ N₄; FW: 140.28; gray pwdr.	100g 500g
14-7423 New	Silicon nitride, 0.2-2.5 microns (99.99%-Si) PURATREM (12033-89-5) Si_3N_4 ; FW: 140.28; light gray pwdr.	50g 250g
14-6990 New Haz	Tetrakis(ethylmethylamino)silane, 98%, TEMAS (477284-75-6) [CH3(CH2CH2)N]4Si; FW: 260.57; colorless liq.; b.p. 40°C; d. 0.89 moisture sensitive	1g 5g 25g

TANTALUM (Compounds)

73-0735 New	(t-Butylimido)tris(ethylmethylamino) tantalum(V), min. 98% (511292-99-2) $C_{13}H_{33}N_4$ Ta; FW: 426.38; yellow liq. air sensitive, moisture sensitive	Me V Et tBu-N=Ta-N K K K Et	1g 5g 25g
		Me	

TIN (Compounds)			
50-5022 New HAZ	Tin(IV) chloride, anhydrous (99.99-Sn%) PURATREM (7646-78-8) SnCl₄; FW: 260.50; colorless liq.; m. p33°; b.p. 114.1°; d. 2.226 air sensitive, moisture sensitive	25g 100g	
50-0518 NEW	Tin(IV) oxide, nanoparticle (30-60 nm), (99.7%-Sn) (18282-10-5) See page 44		

TITANIUM (Compounds)

22-1060 NEW amp HAZ	Tetrakis(ethylmethylamino)titanium, 99% (99.99%-Ti) PURATREM (308103-54-0) $C_{12}H_{32}N_4$ Ti; FW: 280.28; yellow to orange liq. <i>moisture sensitive</i>	2g 10g
22-1175 NEW	Titanium boride, hexagonal crystalline solid, 0.7-10.0 microns, 99% (12045-63-5) TiB ₂ ; FW: 69.52; dark-gray pwdr.	50g 250g
22-1190 NEW	Titanium nitride, 1.3-1.9 microns (99+%-Ti) <i>(25583-20-4)</i> TiN; FW: 61.91; gray pwdr.; m. p. 2930°; d. 5.22	100g 500g

TUNGSTEN (Compounds)

74-1910 NEW	Bis(acetonitrile)tetracarbonyltungsten(0) (16800-45-6) $C_8H_6N_2O_4W$; FW: 377.98; yellow solid air sensitive	1g 5g
74-3180 NEW	Tungsten(VI) oxychloride, 98% (13520-78-0) WOCl,; FW: 341.65; orange needles air sensitive, moisture sensitive	1g 5g 25g

YTTRIUM (Compounds)

39-1550 New amp	Tris(N,N'-di-i-propylformamidinato) yttrium(III), 97% $C_{21}H_{45}N_{6}Y$; FW: 470.53; light beige-yel- low solid air sensitive, moisture sensitive Note: Product sold under, use subject to, terms and conditions of label license at www.strem.com/harvard2	i-Pr N////// N////// i-Pr	250mg 1g 5g

39-2990	Yttrium(III) oxide, 0.5-2.0 microns (99.95%- Y) (1314-36-9)	50g
NEW	Y ₂ O ₃ ; FW: 225.81; white pwdr.; m. p. 2410°; d. 5.01	250g

ZIRCONIUM (Compounds)

40-1054 New	Bis(pentamethylcyclopentadienyl)dimeth- ylzirconium(IV), 99% (67108-80-9) [(CH ₃) ₆ C ₅] ₂ Zr(CH ₃) ₂ ; FW: 391.75; white to off-white xtl. <i>air sensitive, moisture sensitive</i>	Me Me Me Me Zr Me Me Me	
		Me	

Me

`Me

Мe

Technical Note:

1. Zirconium complex used as a polymerization catalyst. References:

- 1. J. Am. Chem. Soc., 2009, 131, 16658.
- 2. Organometallics, **2005**, 24, 6013.

250mg

1g 5g

Novozymes Lipase and Endoprotease Screening Kits

96-0224 NEW

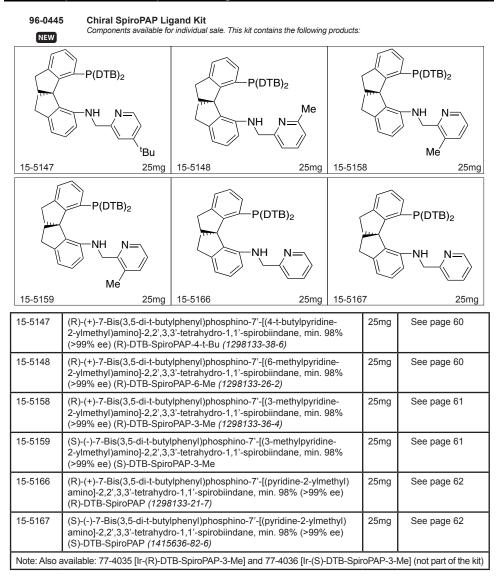
Novozymes Endoprotease Screening Kit (contains 6 endoprotease enzymes)

Components	available for individual sale. This kit contains the following products:		
06-3110	Alcalase® 2.4 L FG (9014-01-1)	10g	See page 25
06-3112	Alcalase® 2.5 L (9014-01-1)	10g	See page 25
06-3115	Esperase® 8.0 L (9014-01-1)	10g	See page 25
06-3137	Savinase® 12 T (9014-01-1)	10g	See page 27
06-3150	Savinase® 16 L (9014-01-1)	10g	See page 27
06-3160	Neutrase® 0.8 L (9014-01-1)	10g	See page 26

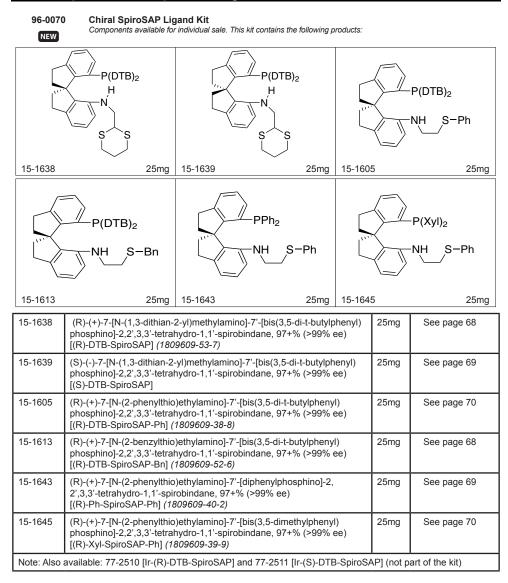
Note: Store at 0-10°C. DO NOT FREEZE. Sold in collaboration with Novozymes A/S

96-0220	Novozymes Lipase Screening Kit (contains 9 lipase enzymes) Components available for individual sale. This kit contains the following products:				
NEW	06-3105	Lipozyme® CALB L (9001-62-1)	10g	See page 25	
	06-3100	NovoCor® AD L (9001-62-1)	10g	See page 26	
	06-3118	Palatase® 20000 L (9001-62-1)	5g	See page 27	
	06-3120	Novozym® 40086 (9001-62-1)	5g	See page 26	
	06-3123	Novozyme® 435 (9001-62-1)	5g	See page 26	
	06-3125	Resinase® HT (9001-62-1)	10g	See page 27	
	06-3135	Novozym® 51032 (9001-62-1)	10g	See page 27	
	06-3140	Lipozyme® TL 100 L (9001-62-1)	10g	See page 26	
	06-3155	Lipozym® TL IM <i>(9001-62-1)</i>	10g	See page 26	

Note: Store at 0-10°C. DO NOT FREEZE. Sold in collaboration with Novozymes A/S


Gold Gemini Nanorods Kit, CTAB Free

96-1549 NEW Gold Gemini Nanorods Kit, CTAB Free (Wavelength 650-850 nm) Components available for individual sale. This kit contains the following products:


79-7010 79-7015	Gold Gemini Nanorods, CTAB Free (Wavelength 650nm) Gold Gemini Nanorods, CTAB Free (Wavelength 700nm)	5ml 5ml	See page 43 See page 43
79-7020	Gold Gemini Nanorods, CTAB Free (Wavelength 750nm)	5ml	See page 43
79-7025	Gold Gemini Nanorods, CTAB Free (Wavelength 800nm)	5ml	See page 43
79-7030	Gold Gemini Nanorods, CTAB Free (Wavelength 850nm)	5ml	See page 43

Note: Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in Collaboration with SONA Nanotech for research purposes only.

Chiral SpiroPAP and SpiroSAP Ligand Kits

Chiral SpiroPAP and SpiroSAP Ligand Kits

New Products - Coming Soon!

Strem Catalog #	Description	Appearance	Particle Size Range (micron)	Optimal Storage Condition		
Enzyme	Enzyme Carrier Resins					
06-0810	Enzyme carrier Lifetech™ ECR8204F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 8°C)		
06-0813	Enzyme carrier Lifetech™ ECR8204M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 8°C)		
06-0817	Enzyme carrier Lifetech™ ECR8209F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 8°C)		
06-0820	Enzyme carrier Lifetech™ ECR8209M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 8°C)		
06-0823	Enzyme carrier Lifetech™ ECR8215F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 8°C)		
06-0826	Enzyme carrier Lifetech™ ECR8215M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 8°C)		
06-0828	Enzyme carrier Lifetech™ ECR8285	White to off white spherical beads	250 - 1000	Keep in dry conditions (2 - 8°C)		
07-1512	Enzyme carrier Lifetech™ ECR8309F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 20°C)		
07-1515	Enzyme carrier Lifetech™ ECR8309M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
07-1518	Enzyme carrier Lifetech™ ECR8315F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 20°C)		
07-1520	Enzyme carrier Lifetech™ ECR8315M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
07-1523	Enzyme carrier Lifetech™ ECR8409F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 20°C)		
07-1525	Enzyme carrier Lifetech™ ECR8409M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
07-1528	Enzyme carrier Lifetech™ ECR8415F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 20°C)		
07-1530	Enzyme carrier Lifetech™ ECR8415M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
07-1532	Enzyme carrier Lifetech™ ECR8806F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 20°C)		
07-1535	Enzyme carrier Lifetech™ ECR8806M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
06-0905	Enzyme carrier Lifetech™ ECR1090F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 20°C)		
06-0913	Enzyme carrier Lifetech™ ECR1090M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
06-0918	Enzyme carrier Lifetech™ ECR1091F	White to off white spherical beads	150-300	Keep in dry conditions (2 - 20°C)		
06-0922	Enzyme carrier Lifetech™ ECR1091M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
06-0925	Enzyme carrier Lifetech™ ECR1030M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
06-0928	Enzyme carrier Lifetech™ ECR1061M	White to off white spherical beads	300-710	Keep in dry conditions (2 - 20°C)		
07-2215	Enzyme carrier Lifetech™ ECR1504	White to off white spherical beads	300-1200	Keep in dry conditions (2 - 20°C)		
07-2220	Enzyme carrier Lifetech™ ECR1508	White to off white spherical beads	300-1200	Keep in dry conditions (2 - 20°C)		
07-2224	Enzyme carrier Lifetech™ ECR1604	White to off white spherical beads	300-1200	Keep in dry conditions (2 - 20°C)		
07-2230	Enzyme carrier Lifetech™ ECR1640	White to off white spherical beads	300-1200	Keep in dry conditions (2 - 20°C)		

New Products - Coming Soon!

Strem Catalog #	Description	Appearance	Particle Size Range (micron)	Optimal Storage Condition
Enzyme	Carrier Resins (cont.)			
96-0255	Enzyme carrier Lifetech™ ECRKIT1	n.a.	n.a.	Keep in dry conditions (2 - 20°C)
Chelating	y Resins			
06-1501	Chelating/scavenger resin with N-methylglucamine - S108	Spherical beads	425 - 630	Keep in dry conditions (2 - 20°C)
06-1508	Chelating/scavenger resin with aminoxime - S910	Spherical beads	300 - 1200	Keep in dry conditions (2 - 20°C)
06-1512	Chelating/scavenger resin with thiourea - S914	Spherical beads	300 - 1200	Keep in dry conditions (2 - 20°C)
06-1514	Chelating/scavenger resin with isothiouronium - S920Plus	Spherical beads	300 - 1200	Keep in dry conditions (2 - 20°C)
06-1518	Chelating/scavenger resin with thiol - S924	Spherical beads	300 - 1000	Keep in dry conditions (2 - 20°C)
06-1520	Chelating/scavenger resin with iminodiacetic - S930Plus	Spherical beads	425 - 1000	Keep in dry conditions (2 - 20°C)
06-1522	Chelating/scavenger resin with aminophosphonic - S940	Spherical beads	425 - 850	Keep in dry conditions (2 - 20°C)
06-1525	Chelating/scavenger resin with aminophosphonic - S950	Spherical beads	300-1000	Keep in dry conditions (2 - 20°C)
06-1528	Chelating/scavenger resin with phosphonic and sulfonic acid - S957	Spherical beads	425 - 1000	Keep in dry conditions (2 - 20°C)
06-1530	Chelating/scavenger resin with bispicolylamine - S960	Spherical beads	425 - 1000	Keep in dry conditions (2 - 20°C)
06-1532	Chelating/scavenger resin with polyamine - S985	Spherical Beads	300 - 1200	Keep in dry conditions (2 - 20°C)
Immobiliz	zed Enzymes			
07-3130	CalB immo Plus™ - Immobilized enzyme	White to slightly yellow spherical beads, free from foreign matter	300-710	Keep in dry conditions (2 - 8°C)
07-3133	CalB immo Plus Food Grade™ - Immobilized enzyme	White to slightly yellow spherical beads, free from foreign matter	300-710	Keep in dry conditions (2 - 8°C)
07-3142	CalB immo 8285™ - Immobilized enzyme	White to slightly yellow spherical beads, free from foreign matter	100-710	Keep in dry conditions (2 - 8°C)
07-3148	CalB immo 8806™ - Immobilized enzyme	White to slightly yellow spherical beads, free from foreign matter	300-710	Keep in dry conditions (2 - 8°C)
07-3152	CalB immo 5587™ - Immobilized enzyme	White to slightly yellow spherical beads, free from foreign matter	300-710	Keep in dry conditions (2 - 8°C)
07-3155	CalB immo 1090™ - Immobilized enzyme	White to slightly yellow spherical beads, free from foreign matter	300-710	Keep in dry conditions (2 - 8°C)
07-3159	CalB immo 5872™ - Immobilized enzyme	White to slightly yellow spherical beads, free from foreign matter	300-1500	Keep in dry conditions (2 - 8°C)
96-4050	CalB immo KIT™ - Immobilized enzyme	n.a.	n.a.	Keep in dry conditions (2 - 8°C)

06-3545

CARBON (Compounds)

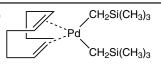
Carbon tetrachloride (99.999%-C) PURATREM (56-23-5) CCl₄; FW: 153.82; colorless liq.

CHROMIUM (Compounds)

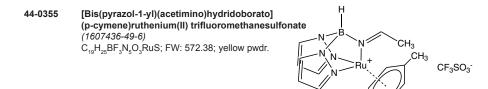
24-2405 Chromium(II) chloride, anhydrous (99.99%-Cr) PURATREM (10049-05-5) CrCl₂; FW: 122.90; off-white to pale green pwdr.

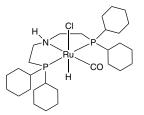

NICKEL (Compounds)

28-1165 Nickel(II) chloride, anhydrous, (99.99+%-Ni) PURATREM (7718-54-9) Cl₂Ni; FW: 129.62; yellow pwdr.

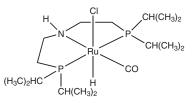

PALLADIUM (Compounds)

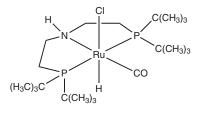
46-0241 Bis{[2-(Diadamantylphosphino)-3-methoxy-2',4',6'-tri-i-propyl-3'-(2,3,5,6-tetrafluoro-4butylphenyl)-1,1'-biphenyl]palladium(0)} 1,5-cyclooctadiene, [AIPhos Palladium complex] (1805783-51-0)


C₁₁₂H₁₄₆F₈O₂P₂Pd₂ FW: 1951.13; yellow-green solid


46-0308 Bis[(trimethylsilyl)methyl](1,5-cyclooctadiene) palladium(II), 98% (225931-80-6) C₁₆H₃₄PdSi₂; FW: 389.03; gray pwdr.

RUTHENIUM (Compounds)


44-1043 Carbonylchlorohydrido[bis(2-dicyclohexylphosphinoethyl)amine] ruthenium(II), min. 97% (1421060-11-8) C₂₀H_e,CINOP₂Ru; FW: 631.22; white solid


(H₃C)₂HC

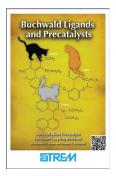
RUTHENIUM (Compounds)

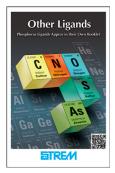
44-1032 Carbonylchlorohydrido[bis(2-dii-propylphosphinoethyl)amine] ruthenium(II), min. 97% (1311164-69-8) C₁₇H₃₈CINOP₂Ru; FW: 470.96; off-white solid

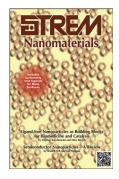
44-1035 Carbonylchlorohydrido[bis(2-dit-butylphosphinoethyl)amine]ruthenium(II), min. 97% (1421060-10-7) C₂₁H₄₆CINOP₂Ru; FW: 527.07; off-white solid

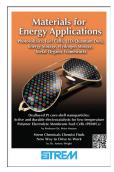
YTTRIUM (Compounds)

39-5055 Tris(ethylcyclopentadienyl)yttrium, 97% (476364-59-7) (C₂H₃C₅H₄)₃Y; FW: 368.34; yellow xtls.




Available Booklets





THE STREM CHEMIKER

Strem Chemicals, Inc.

7 Mulliken Way Newburyport, MA 01950-4098 U.S.A. Tel.: (978) 499-1600 Fax: (978) 465-3104 (Toll-free numbers below US & Canada only) Tel.: (800) 647-8736 Fax: (800) 517-8736

OUR LINE OF RESEARCH CHEMICALS

Metal Alkoxides & beta-Diketonates Metal Catalysts & Chiral Catalysts Biocatalysts & Organocatalysts Metal Carbonyls & Derivatives Metal Foils, Wires, Powders & Metal Acetates & Carbonates Electronic Grade Chemicals Metal Alkyls & Alkylamides Metal Halides, Hydrides & Ligands & Chiral Ligands High Purity Inorganics & Metal Oxides, Nitrates, Chalcogenides Alkali Metals Deuterides onic Liquids Elements Fullerenes

Metal Scavengers Metalbocenes Nanomaterials Organontuoninees Organontetallics Organophosphines & Arsines Porphines & Phthalocyanines Procious Metal & Rare Earth Chemicals Procious Metal & Rare Earth Condatile Precursors for MOCVD,

Bulk Manufacturing Custom Synthesis CGMP Facilities FDA Inspected Drug Master Files Complete Documentation

Check out our new website search capabilities. Follow us on Twitter and Linkedin. View our blogs on our home page. www.strem.com

