Strem Chemicals, Inc.

Catalog \# 07-8436
 3-[[3,5-Bis(trifluoromethyl)phenyl]amino]-4-[[(8a,9S)-6'-methoxycinchonan-9-yl]amino]-3-

 cyclobutene-1,2-dione

Technical Notes:

1. Michael Addition: A series of squaramide-based organocatalysts were facilely synthesized and applied as hydrogen bonding organocatalysts in the enantioselective Michael addition of nitroalkanes to chalcones.
2. Sulfa-Michael Addition/Thioesterification: A novel highly enantioselective one-pot dithiolation through sulfa-Michael addition/thioesterification of thiols with α, β-unsaturated N-acylated succinimides catalysed by squaramide has been developed.
3. Michael-Aldol Reaction: Highly enantio- and diastereoselective tandem Michael-aldol reactions, efficiently catalyzed by a cinchona alkaloid thiourea via synergistic noncovalent hydrogen-bonding activation of both the Michael donor and acceptor, have been developed.
4. Sulfa-Michael/Aldol Cascade Reaction: A bifunctional squaramide catalyzed sulfa-Michael/aldol cascade reaction between 1,4-dithiane-2,5-diol and chalcones with a low catalyst loading has been developed.
5. The organocatalyzed enantioselective synthesis of a series of chiral 2-amino-5,6,7,8-tetrahydro-5-oxo-4H-chromene-3-carbonitriles was achieved using bifunctional squaramides as the catalysts.
6. Cascade Reaction: The reaction features a new activation mode of organocatalytic dynamic kinetic resolution involving a Michael-retro-Michael-Michael-Michael cascade.
7. A powerful cascade reaction was developed for the synthesis of chromeno[4,3-b]pyrrolidines with high yields and excellent stereoselectivities.

93-96\% e.e.
95-96\% e.e.

Tech Note (1)
Ref. (1)

Strem Chemicals, Inc.

Tech Note (3)
Ref. (3)

Tech Note (4)
Ref. (4)

Tech Note (5)
Ref. (5)

99% yield
$>30: 1 \mathrm{dr}$ up to $>99 \%$ e.e.

Tech Note (7)
Ref. (7)

References:

1. Org. Lett., 2010, 12, 5450-5453.
2. Org. Biomol. Chem., 2014, 12, 1585-1594.
3. J. Am. Chem. Soc., 2007, 129, 1036-1037.
4. Org. Lett., 2012, 14, 1090-1093.
5. Tetrahedron: Asymmetry, 2012, 23, 1343-1349.
6. Angew. Chem. Int. Ed., 2008, 47, 4177-4179.
7. Chem. Commun., 2014, 50, 2428-2430.
